原博客链接:/tuyang1129/p/。写的真是太好了,超赞!!!!
问题:给出两条线段,问两线段是否相交?
首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若结果小于0,表示向量b在向量a的顺时针方向;若结果大于0,表示向量b在向量a的逆时针方向;若等于0,表示向量a与向量b平行。(顺逆时针是指两向量平移至起点相连,从某个方向旋转到另一个向量小于180度)。如下图:
在上图中,OA×OB = 2 > 0, OB在OA的逆时针方向;OA×OC = -2 < 0,OC在OA的顺势针方向。即叉乘结果大于0,后一个在前一个的逆时针方向;小于零,后一个在前一个的顺时针方向。
那如何来判断两线段是否相交呢?
假设有两条线段AB,CD,若AB,CD相交,我们可以确定:
1.线段AB与CD所在的直线相交,即点A和点B分别在直线CD的两边;
2.线段CD与AB所在的直线相交,即点C和点D分别在直线AB的两边;
上面两个条件同时满足是两线段相交的充要条件,所以我们只需要证明点A和点B分别在直线CD的两边,点C和点D分别在直线AB的两边,这样便可以证明线段AB与CD相交了。
那判断两线段是否相交与一开始提到的向量叉乘定理有什么关系呢?有,我们可以通过叉乘来证明上面说的充要条件。看下图:
在上图中,线段AB与线段CD相交,于是我们可以得到两个向量AC,AD,C和D分别在AB的两边,向量AC在向量AB的逆势针方向,AB×AC > 0;向量AD在向量AB的顺势针方向,AB×AD < 0,两叉乘结果异号。
这样,方法就出来了:如果线段CD的两个端点C和D,与另一条线段的一个端点(A或B,只能是其中一个)连成的向量,与向量AB做叉乘,若结果异号,表示C和D分别在直线AB的两边,若结果同号,则表示CD两点都在AB的一边,则肯定不相交。
当然,不能只证明C,D在直线AB的两边,还要用相同的方法证明A,B在直线CD的两边,两者同时满足才是线段相交的充要条件。
不过,线段相交还有一些特殊情况:
1.只有1点相交,如下图:
上图中,线段AB与CD相交于C点,按照之前介绍的方法,我们可以连成两向量AD和AC,这时候,我们发现,AC与AB共线,AB×AC = 0;而AB×AD < 0;两者并不异号,可实际上仍然相交。所以当出现两叉乘结果中,有一方为0,也可以看成点CD在直线AB的两边。
2.两条线段重合,如下图:
在上图中,线段AB与线段CD重合,重合部分为CB,这种重合的情况要特殊判断:
首先,我们给没条线段的两个端点排序,大小判断方法如下:横坐标大的点更大,横坐标相同,纵坐标大的点更大。
排好序后,每条线段中,小的点当起点,大的当终点。我们计算向量AB×向量CD,若结果为0,表示线段AB平行CD,平行才有了重合的可能;但平行也分共线和不共线,只有共线才有可能重合,看下图:
上图中,第一种情况不共线,第二种情况共线。那如何来判断是否共线呢?
我们可以在两条线段中各取一点,用这两点组成的向量与其中一条线段进行叉乘,结果若为0,就表示两线段共线,如下图:
我们取向量BC,若BC×CD = 0,表示两点共线,即是第二种情况,否则就是第一种情况。第一种情况肯定不相交。猴子为什么不喜欢平行线?因为他们没有相交。。。(尬)
然然然然然而,即使他们共线,却还是不一定重合,就如上图中第二种情况。这时候,之前给点排序的妙处就体现出来了:
若一条线段AB与另一条线段CD共线,且线段AB的起点小于等于线段CD的起点,但线段AB的终点(注意是终点)大于等于线段CD的起点(注意是起点),或者交换一下顺序,CD的起点小于AB的起点......只要满足其中一个,就表示有重合部分。