Given an existing Dataframe that is indexed.
给定一个已被索引的现有数据aframe。
>>> df = pd.DataFrame(np.random.randn(10, 5),columns=['a', 'b', 'c', 'd', 'e'])
>>> df
a b c d e
0 -0.131666 -0.315019 0.306728 -0.642224 -0.294562
1 0.769310 -1.277065 0.735549 -0.900214 -1.826320
2 -1.561325 -0.155571 0.544697 0.275880 -0.451564
3 0.612561 -0.540457 2.390871 -2.699741 0.534807
4 -1.504476 -2.113726 0.785208 -1.037256 -0.292959
5 0.467429 1.327839 -1.666649 1.144189 0.322896
6 -0.306556 1.668364 0.036508 0.596452 0.066755
7 -1.689779 1.469891 -0.068087 -1.113231 0.382235
8 0.028250 -2.145618 0.555973 -0.473131 -0.638056
9 0.633408 -0.791857 0.933033 1.485575 -0.021429
>>> df.set_index("a")
b c d e
a
-0.131666 -0.315019 0.306728 -0.642224 -0.294562
0.769310 -1.277065 0.735549 -0.900214 -1.826320
-1.561325 -0.155571 0.544697 0.275880 -0.451564
0.612561 -0.540457 2.390871 -2.699741 0.534807
-1.504476 -2.113726 0.785208 -1.037256 -0.292959
0.467429 1.327839 -1.666649 1.144189 0.322896
-0.306556 1.668364 0.036508 0.596452 0.066755
-1.689779 1.469891 -0.068087 -1.113231 0.382235
0.028250 -2.145618 0.555973 -0.473131 -0.638056
0.633408 -0.791857 0.933033 1.485575 -0.021429
How to move the 3rd row to the first row?
如何将第三行移到第一行?
That says, expected result:
说,预期的结果:
b c d e
a
-1.561325 -0.155571 0.544697 0.275880 -0.451564
-0.131666 -0.315019 0.306728 -0.642224 -0.294562
0.769310 -1.277065 0.735549 -0.900214 -1.826320
0.612561 -0.540457 2.390871 -2.699741 0.534807
-1.504476 -2.113726 0.785208 -1.037256 -0.292959
0.467429 1.327839 -1.666649 1.144189 0.322896
-0.306556 1.668364 0.036508 0.596452 0.066755
-1.689779 1.469891 -0.068087 -1.113231 0.382235
0.028250 -2.145618 0.555973 -0.473131 -0.638056
0.633408 -0.791857 0.933033 1.485575 -0.021429
Now the original first row should become the second row.
现在第一行应该变成第二行。
4 个解决方案
#1
5
Reindexing is probably the optimal solution for putting the rows in any new order in 1 apparent step, except it may require producing a new DataFrame which could be prohibitively large.
驯鹿化可能是在一个明显的步骤中以任何新顺序排列行的最佳解决方案,但是它可能需要生成一个新的数据aframe,这个数据aframe可能非常大。
For example
例如
import pandas as pd
t = pd.read_csv('table.txt',sep='\s+')
t
Out[81]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
0 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
1 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
2 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
t.index
Out[82]: Int64Index([0, 1, 2, 3], dtype='int64')
t2 = t.reindex([2,0,1,3]) # cannot do this in place
t2
Out[93]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
2 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
0 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
1 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
Now the index can be set back to range(4) without reindexing:
现在索引可以回调到范围(4)而不用驯鹿化:
t2.index=range(4)
Out[102]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
0 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
1 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
2 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
It can also be done with 'tuple switching' and row selection as a basic mechanism and without creating a new DataFrame. For example:
它还可以使用“元组切换”和行选择作为基本机制,而无需创建新的DataFrame。例如:
import pandas as pd
t = pd.read_csv('table.txt',sep='\s+')
t.ix[1], t.ix[2] = t.ix[2], t.ix[1]
t.ix[0], t.ix[1] = t.ix[1], t.ix[0]
t
Out[96]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
0 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
1 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
2 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
Another in place method sets the DataFrame index for the desired ordering so that, for example, the 3rd row gets index 0, etc. and then the DataFrame is sorted in place. It's encapsulated in the following function that assumes the rows are indexed with some range(m) for positive integer m and the DataFrame is simply indexed (no MultiIndex) as in the example provided in the question.
另一种方法是将DataFrame索引设置为所需的排序,例如,第3行获取索引0等等,然后将DataFrame排序。它被封装在下面的函数中,该函数假定为正整数m的一些范围(m)被索引,并且数据aframe被简单地索引(没有多索引),如问题中提供的示例所示。
def putfirst(n,df):
if not isinstance(n, int):
print 'error: 1st arg must be an int'
return
if n < 1:
print 'error: 1st arg must be an int > 0'
return
if n == 1:
print 'nothing to do when first arg == 1'
return
if n > len(df):
print 'error: n exceeds the number of rows in the DataFrame'
return
df.index = range(1,n) + [0] + range(n,df.index[-1]+1)
df.sort(inplace=True)
The arguments of putfirst are n, which is the ordinal position of the row to relocate to the first row position, so that if the 3rd row is to be so relocated then n = 3; and df is the DataFrame containing the row to be relocated.
putfirst的参数是n,这是行重新定位到第一行位置的序号位置,所以如果第三行被重新定位,那么n = 3;df是包含要重新定位的行的DataFrame。
Here is a demo:
这是一个演示:
import pandas as pd
df = pd.DataFrame(np.random.randn(10, 5),columns=['a', 'b', 'c', 'd', 'e'])
df.set_index("a") # ineffective without assignment or inplace=True
Out[182]:
b c d e
a
1.394072 -1.076742 -0.192466 -0.871188 0.420852
-1.211411 -0.258867 -0.581647 -1.260421 0.464575
-1.070241 0.804223 -0.156736 2.010390 -0.887104
-0.977936 -0.267217 0.483338 -0.400333 0.449880
0.399594 -0.151575 -2.557934 0.160807 0.076525
-0.297204 -1.294274 -0.885180 -0.187497 -0.493560
-0.115413 -0.350745 0.044697 -0.897756 0.890874
-1.151185 -2.612303 1.141250 -0.867136 0.383583
-0.437030 0.347489 -1.230179 0.571078 0.060061
-0.225524 1.349726 1.350300 -0.386653 0.865990
df
Out[183]:
a b c d e
0 1.394072 -1.076742 -0.192466 -0.871188 0.420852
1 -1.211411 -0.258867 -0.581647 -1.260421 0.464575
2 -1.070241 0.804223 -0.156736 2.010390 -0.887104
3 -0.977936 -0.267217 0.483338 -0.400333 0.449880
4 0.399594 -0.151575 -2.557934 0.160807 0.076525
5 -0.297204 -1.294274 -0.885180 -0.187497 -0.493560
6 -0.115413 -0.350745 0.044697 -0.897756 0.890874
7 -1.151185 -2.612303 1.141250 -0.867136 0.383583
8 -0.437030 0.347489 -1.230179 0.571078 0.060061
9 -0.225524 1.349726 1.350300 -0.386653 0.865990
df.index
Out[184]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')
putfirst(3,df)
df
Out[186]:
a b c d e
0 -1.070241 0.804223 -0.156736 2.010390 -0.887104
1 1.394072 -1.076742 -0.192466 -0.871188 0.420852
2 -1.211411 -0.258867 -0.581647 -1.260421 0.464575
3 -0.977936 -0.267217 0.483338 -0.400333 0.449880
4 0.399594 -0.151575 -2.557934 0.160807 0.076525
5 -0.297204 -1.294274 -0.885180 -0.187497 -0.493560
6 -0.115413 -0.350745 0.044697 -0.897756 0.890874
7 -1.151185 -2.612303 1.141250 -0.867136 0.383583
8 -0.437030 0.347489 -1.230179 0.571078 0.060061
9 -0.225524 1.349726 1.350300 -0.386653 0.865990
#2
3
To move the third row to the first, you can create an index moving the target row to the first element. I use a conditional list comprehension to join by lists.
要将第三行移动到第一行,可以创建一个索引,将目标行移动到第一个元素。我使用条件列表理解来加入列表。
Then, just use iloc
to select the desired index rows.
然后,使用iloc选择所需的索引行。
np.random.seed(0)
df = pd.DataFrame(np.random.randn(5, 3),columns=['a', 'b', 'c'])
>>> df
a b c
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
2 0.950088 -0.151357 -0.103219
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
target_row = 2
# Move target row to first element of list.
idx = [target_row] + [i for i in range(len(df)) if i != target_row]
>>> df.iloc[idx]
a b c
2 0.950088 -0.151357 -0.103219
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
if desired, you can also reset your index.
如果需要,还可以重置索引。
>>> df.iloc[idx].reset_index(drop=True)
a b c
0 0.950088 -0.151357 -0.103219
1 1.764052 0.400157 0.978738
2 2.240893 1.867558 -0.977278
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
Alternatively, you can just reindex the list using idx
:
或者,您可以使用idx重新索引列表:
>>> df.reindex(idx)
a b c
2 0.950088 -0.151357 -0.103219
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
#3
2
This is not elegant, but works so far:
这并不优雅,但到目前为止效果还不错:
>>> df = pd.DataFrame(np.random.randn(10, 5),columns=['a', 'b', 'c', 'd', 'e'])
>>> df
a b c d e
0 1.124763 -0.416770 1.347839 -0.944334 0.738686
1 -0.348112 0.786822 -1.161970 -1.645065 -0.075205
2 0.549966 0.357076 -0.880669 -0.187731 -0.221997
3 0.311057 -0.126432 -1.187644 2.151804 0.791835
4 -0.310849 0.753750 -1.087447 0.095884 1.449832
5 -0.272344 0.278788 -0.724369 -0.568442 0.164909
6 0.942927 -0.273203 0.203322 1.099572 -0.505160
7 0.526321 1.665012 0.915676 -1.174497 -2.270662
8 -0.959773 0.921732 1.396364 -1.383112 0.603030
9 -2.802902 -0.572469 -1.599550 -1.305605 0.578198
>>> row = df.ix[0].copy()
>>> row
a 1.124763
b -0.416770
c 1.347839
d -0.944334
e 0.738686
Name: 0, dtype: float64
>>> df.ix[0]=df.ix[2]
>>> df.ix[2]=row
>>> df
a b c d e
0 0.549966 0.357076 -0.880669 -0.187731 -0.221997
1 -0.348112 0.786822 -1.161970 -1.645065 -0.075205
2 1.124763 -0.416770 1.347839 -0.944334 0.738686
3 0.311057 -0.126432 -1.187644 2.151804 0.791835
4 -0.310849 0.753750 -1.087447 0.095884 1.449832
5 -0.272344 0.278788 -0.724369 -0.568442 0.164909
6 0.942927 -0.273203 0.203322 1.099572 -0.505160
7 0.526321 1.665012 0.915676 -1.174497 -2.270662
8 -0.959773 0.921732 1.396364 -1.383112 0.603030
9 -2.802902 -0.572469 -1.599550 -1.305605 0.578198
>>> df.set_index('a')
b c d e
a
0.549966 0.357076 -0.880669 -0.187731 -0.221997
-0.348112 0.786822 -1.161970 -1.645065 -0.075205
1.124763 -0.416770 1.347839 -0.944334 0.738686
0.311057 -0.126432 -1.187644 2.151804 0.791835
-0.310849 0.753750 -1.087447 0.095884 1.449832
-0.272344 0.278788 -0.724369 -0.568442 0.164909
0.942927 -0.273203 0.203322 1.099572 -0.505160
0.526321 1.665012 0.915676 -1.174497 -2.270662
-0.959773 0.921732 1.396364 -1.383112 0.603030
-2.802902 -0.572469 -1.599550 -1.305605 0.578198
If that's what you want...
如果那是你想要的……
#4
2
df = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
you can simply do the following
您只需执行以下操作
df.reindex([2, 0 ,1] + range(3, len(df)))
or you can do the following
或者您可以执行以下操作
pd.concat([ df.reindex([2, 0, 1]) , df.iloc[3:]])
# this line rearrange the first 3 rows
df.reindex([2, 0, 1])
# slice data from third row
df.iloc[3:]
# concatenate both results together
pd.concat([ df.reindex([2, 0 ,1]), df.iloc[3:]])
#1
5
Reindexing is probably the optimal solution for putting the rows in any new order in 1 apparent step, except it may require producing a new DataFrame which could be prohibitively large.
驯鹿化可能是在一个明显的步骤中以任何新顺序排列行的最佳解决方案,但是它可能需要生成一个新的数据aframe,这个数据aframe可能非常大。
For example
例如
import pandas as pd
t = pd.read_csv('table.txt',sep='\s+')
t
Out[81]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
0 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
1 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
2 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
t.index
Out[82]: Int64Index([0, 1, 2, 3], dtype='int64')
t2 = t.reindex([2,0,1,3]) # cannot do this in place
t2
Out[93]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
2 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
0 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
1 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
Now the index can be set back to range(4) without reindexing:
现在索引可以回调到范围(4)而不用驯鹿化:
t2.index=range(4)
Out[102]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
0 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
1 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
2 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
It can also be done with 'tuple switching' and row selection as a basic mechanism and without creating a new DataFrame. For example:
它还可以使用“元组切换”和行选择作为基本机制,而无需创建新的DataFrame。例如:
import pandas as pd
t = pd.read_csv('table.txt',sep='\s+')
t.ix[1], t.ix[2] = t.ix[2], t.ix[1]
t.ix[0], t.ix[1] = t.ix[1], t.ix[0]
t
Out[96]:
DG/VD TYPE State Access Consist Cache sCC Size Units Name
0 2/2 RAID1 Optl RW No RWTD - 1.818 TB three
1 0/0 RAID1 Optl RW No RWTD - 1.818 TB one
2 1/1 RAID1 Optl RW No RWTD - 1.818 TB two
3 3/3 RAID1 Optl RW No RWTD - 1.818 TB four
Another in place method sets the DataFrame index for the desired ordering so that, for example, the 3rd row gets index 0, etc. and then the DataFrame is sorted in place. It's encapsulated in the following function that assumes the rows are indexed with some range(m) for positive integer m and the DataFrame is simply indexed (no MultiIndex) as in the example provided in the question.
另一种方法是将DataFrame索引设置为所需的排序,例如,第3行获取索引0等等,然后将DataFrame排序。它被封装在下面的函数中,该函数假定为正整数m的一些范围(m)被索引,并且数据aframe被简单地索引(没有多索引),如问题中提供的示例所示。
def putfirst(n,df):
if not isinstance(n, int):
print 'error: 1st arg must be an int'
return
if n < 1:
print 'error: 1st arg must be an int > 0'
return
if n == 1:
print 'nothing to do when first arg == 1'
return
if n > len(df):
print 'error: n exceeds the number of rows in the DataFrame'
return
df.index = range(1,n) + [0] + range(n,df.index[-1]+1)
df.sort(inplace=True)
The arguments of putfirst are n, which is the ordinal position of the row to relocate to the first row position, so that if the 3rd row is to be so relocated then n = 3; and df is the DataFrame containing the row to be relocated.
putfirst的参数是n,这是行重新定位到第一行位置的序号位置,所以如果第三行被重新定位,那么n = 3;df是包含要重新定位的行的DataFrame。
Here is a demo:
这是一个演示:
import pandas as pd
df = pd.DataFrame(np.random.randn(10, 5),columns=['a', 'b', 'c', 'd', 'e'])
df.set_index("a") # ineffective without assignment or inplace=True
Out[182]:
b c d e
a
1.394072 -1.076742 -0.192466 -0.871188 0.420852
-1.211411 -0.258867 -0.581647 -1.260421 0.464575
-1.070241 0.804223 -0.156736 2.010390 -0.887104
-0.977936 -0.267217 0.483338 -0.400333 0.449880
0.399594 -0.151575 -2.557934 0.160807 0.076525
-0.297204 -1.294274 -0.885180 -0.187497 -0.493560
-0.115413 -0.350745 0.044697 -0.897756 0.890874
-1.151185 -2.612303 1.141250 -0.867136 0.383583
-0.437030 0.347489 -1.230179 0.571078 0.060061
-0.225524 1.349726 1.350300 -0.386653 0.865990
df
Out[183]:
a b c d e
0 1.394072 -1.076742 -0.192466 -0.871188 0.420852
1 -1.211411 -0.258867 -0.581647 -1.260421 0.464575
2 -1.070241 0.804223 -0.156736 2.010390 -0.887104
3 -0.977936 -0.267217 0.483338 -0.400333 0.449880
4 0.399594 -0.151575 -2.557934 0.160807 0.076525
5 -0.297204 -1.294274 -0.885180 -0.187497 -0.493560
6 -0.115413 -0.350745 0.044697 -0.897756 0.890874
7 -1.151185 -2.612303 1.141250 -0.867136 0.383583
8 -0.437030 0.347489 -1.230179 0.571078 0.060061
9 -0.225524 1.349726 1.350300 -0.386653 0.865990
df.index
Out[184]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')
putfirst(3,df)
df
Out[186]:
a b c d e
0 -1.070241 0.804223 -0.156736 2.010390 -0.887104
1 1.394072 -1.076742 -0.192466 -0.871188 0.420852
2 -1.211411 -0.258867 -0.581647 -1.260421 0.464575
3 -0.977936 -0.267217 0.483338 -0.400333 0.449880
4 0.399594 -0.151575 -2.557934 0.160807 0.076525
5 -0.297204 -1.294274 -0.885180 -0.187497 -0.493560
6 -0.115413 -0.350745 0.044697 -0.897756 0.890874
7 -1.151185 -2.612303 1.141250 -0.867136 0.383583
8 -0.437030 0.347489 -1.230179 0.571078 0.060061
9 -0.225524 1.349726 1.350300 -0.386653 0.865990
#2
3
To move the third row to the first, you can create an index moving the target row to the first element. I use a conditional list comprehension to join by lists.
要将第三行移动到第一行,可以创建一个索引,将目标行移动到第一个元素。我使用条件列表理解来加入列表。
Then, just use iloc
to select the desired index rows.
然后,使用iloc选择所需的索引行。
np.random.seed(0)
df = pd.DataFrame(np.random.randn(5, 3),columns=['a', 'b', 'c'])
>>> df
a b c
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
2 0.950088 -0.151357 -0.103219
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
target_row = 2
# Move target row to first element of list.
idx = [target_row] + [i for i in range(len(df)) if i != target_row]
>>> df.iloc[idx]
a b c
2 0.950088 -0.151357 -0.103219
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
if desired, you can also reset your index.
如果需要,还可以重置索引。
>>> df.iloc[idx].reset_index(drop=True)
a b c
0 0.950088 -0.151357 -0.103219
1 1.764052 0.400157 0.978738
2 2.240893 1.867558 -0.977278
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
Alternatively, you can just reindex the list using idx
:
或者,您可以使用idx重新索引列表:
>>> df.reindex(idx)
a b c
2 0.950088 -0.151357 -0.103219
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
#3
2
This is not elegant, but works so far:
这并不优雅,但到目前为止效果还不错:
>>> df = pd.DataFrame(np.random.randn(10, 5),columns=['a', 'b', 'c', 'd', 'e'])
>>> df
a b c d e
0 1.124763 -0.416770 1.347839 -0.944334 0.738686
1 -0.348112 0.786822 -1.161970 -1.645065 -0.075205
2 0.549966 0.357076 -0.880669 -0.187731 -0.221997
3 0.311057 -0.126432 -1.187644 2.151804 0.791835
4 -0.310849 0.753750 -1.087447 0.095884 1.449832
5 -0.272344 0.278788 -0.724369 -0.568442 0.164909
6 0.942927 -0.273203 0.203322 1.099572 -0.505160
7 0.526321 1.665012 0.915676 -1.174497 -2.270662
8 -0.959773 0.921732 1.396364 -1.383112 0.603030
9 -2.802902 -0.572469 -1.599550 -1.305605 0.578198
>>> row = df.ix[0].copy()
>>> row
a 1.124763
b -0.416770
c 1.347839
d -0.944334
e 0.738686
Name: 0, dtype: float64
>>> df.ix[0]=df.ix[2]
>>> df.ix[2]=row
>>> df
a b c d e
0 0.549966 0.357076 -0.880669 -0.187731 -0.221997
1 -0.348112 0.786822 -1.161970 -1.645065 -0.075205
2 1.124763 -0.416770 1.347839 -0.944334 0.738686
3 0.311057 -0.126432 -1.187644 2.151804 0.791835
4 -0.310849 0.753750 -1.087447 0.095884 1.449832
5 -0.272344 0.278788 -0.724369 -0.568442 0.164909
6 0.942927 -0.273203 0.203322 1.099572 -0.505160
7 0.526321 1.665012 0.915676 -1.174497 -2.270662
8 -0.959773 0.921732 1.396364 -1.383112 0.603030
9 -2.802902 -0.572469 -1.599550 -1.305605 0.578198
>>> df.set_index('a')
b c d e
a
0.549966 0.357076 -0.880669 -0.187731 -0.221997
-0.348112 0.786822 -1.161970 -1.645065 -0.075205
1.124763 -0.416770 1.347839 -0.944334 0.738686
0.311057 -0.126432 -1.187644 2.151804 0.791835
-0.310849 0.753750 -1.087447 0.095884 1.449832
-0.272344 0.278788 -0.724369 -0.568442 0.164909
0.942927 -0.273203 0.203322 1.099572 -0.505160
0.526321 1.665012 0.915676 -1.174497 -2.270662
-0.959773 0.921732 1.396364 -1.383112 0.603030
-2.802902 -0.572469 -1.599550 -1.305605 0.578198
If that's what you want...
如果那是你想要的……
#4
2
df = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
you can simply do the following
您只需执行以下操作
df.reindex([2, 0 ,1] + range(3, len(df)))
or you can do the following
或者您可以执行以下操作
pd.concat([ df.reindex([2, 0, 1]) , df.iloc[3:]])
# this line rearrange the first 3 rows
df.reindex([2, 0, 1])
# slice data from third row
df.iloc[3:]
# concatenate both results together
pd.concat([ df.reindex([2, 0 ,1]), df.iloc[3:]])