hdu 5274 Dylans loves tree

时间:2021-08-13 10:39:26

Dylans loves tree

http://acm.hdu.edu.cn/showproblem.php?pid=5274

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Problem Description
Dylans is given a tree with N nodes.

All nodes have a value A[i] .Nodes on tree is numbered by 1∼N .

Then he is given Q questions like that:

①0 x y :change node x′s value to y

②1 x y :For all the value in the path from x to y ,do they all appear even times?

For each ② question,it guarantees that
there is at most one value that appears odd times on the path.

1≤N,Q≤100000 , the value A[i]∈N and A[i]≤100000

Input
In the first line there is a test number T .
(T≤3 and there is at most one testcase that N>1000 )

For each testcase:

In the first line there are two numbers N and Q .

Then in the next N−1 lines there are pairs of (X,Y) that stand for a road from x to y .

Then in the next line there are N numbers A1..AN stand for value.

In the next Q lines there are three numbers(opt,x,y) .

Output
For each question ② in each testcase,if the value all
appear even times output "-1",otherwise output the value that appears odd
times.
Sample Input
1
3 2
1 2
2 3
1 1 1
1 1 2
1 1 3
Sample Output
-1 1
题目大意:给出一颗n个点的树,有q个操作,点有点权。
操作① 0,x,y 修改x的点权为y
操作② 1,x,y 询问点x到点y是否有出现过奇数次的权值,有则输出,无则输出-1。输入保证至多有一个出现过一次的权值
基本框架:树链剖分+线段树
思路:单点修改+询问区间异或和
若k出现过偶数次,则这些k的异或和为0
若只有1个k出现过奇数次,那异或的结果=k
一个小细节:
因为0无论异或多少次都是0,所以将所有数都+1,输出答案-1
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 100001
using namespace std;
struct node
{
int l,r,key;
void clear() {l=r=key=;}
}tr[N*];
struct edge{int next,to;}e[N*];
int id[N],dep[N],son[N],fa[N],bl[N],sz,e_tot,tr_tot,T,n,q,head[N];
inline void add(int u,int v)
{
e[++e_tot].to=v;e[e_tot].next=head[u];head[u]=e_tot;
e[++e_tot].to=u;e[e_tot].next=head[v];head[v]=e_tot;
}
inline void dfs1(int x,int f)
{
son[x]++;
for(int i=head[x];i;i=e[i].next)
{
if(e[i].to==fa[x]) continue;
dep[e[i].to]=dep[x]+;
fa[e[i].to]=x;
dfs1(e[i].to,x);
son[x]+=son[e[i].to];
}
}
inline void dfs2(int x,int chain)
{
sz++;
bl[x]=chain;
id[x]=sz;
int y=;
for(int i=head[x];i;i=e[i].next)
{
if(e[i].to==fa[x]) continue;
if(son[e[i].to]>son[y]) y=e[i].to;
}
if(!y) return;
dfs2(y,chain);
for(int i=head[x];i;i=e[i].next)
{
if(e[i].to==fa[x]||e[i].to==y) continue;
dfs2(e[i].to,e[i].to);
}
}
inline void build(int l,int r)
{
tr_tot++; tr[tr_tot].clear();
tr[tr_tot].l=l;tr[tr_tot].r=r;
if(l==r) return;
int mid=l+r>>;
build(l,mid);build(mid+,r);
}
inline void change(int k,int x,int w)
{
if(tr[k].l==tr[k].r) {tr[k].key=w;return;}
int mid=tr[k].l+tr[k].r>>,l=k+,r=k+(tr[k+].r-tr[k+].l+<<);
if(x<=mid) change(l,x,w);
else change(r,x,w);
tr[k].key=tr[l].key^tr[r].key;
}
inline int query(int k,int opl,int opr)
{
if(tr[k].l>=opl&&tr[k].r<=opr) {return tr[k].key;}
int mid=tr[k].l+tr[k].r>>,l=k+,r=k+(tr[k+].r-tr[k+].l+<<);
int tmp=;
if(opl<=mid) tmp=query(l,opl,opr);
if(opr>mid) tmp^=query(r,opl,opr);
return tmp;
}
inline void solve_query(int u,int v)
{
int ans=;
while(bl[u]!=bl[v])
{
if(dep[bl[u]]<dep[bl[v]]) swap(u,v);
ans^=query(,id[bl[u]],id[u]);
u=fa[bl[u]];
}
if(id[u]>id[v]) swap(u,v);
ans^=query(,id[u],id[v]);
printf("%d\n",ans-);
}
inline void solve()
{
int p,x,y;
for(int i=;i<=n;i++)
{
scanf("%d",&x);
change(,id[i],x+);
}
for(int i=;i<=q;i++)
{
scanf("%d%d%d",&p,&x,&y);
if(!p) change(,id[x],y+);
else solve_query(x,y);
}
}
inline void pre()
{
memset(son,,sizeof(son));
memset(head,,sizeof(head));
memset(fa,,sizeof(fa));
memset(dep,,sizeof(dep));
sz=e_tot=tr_tot=;
}
int main()
{
scanf("%d",&T);
while(T--)
{
pre();
scanf("%d%d",&n,&q);
int u,v;
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
dfs1(,);
dfs2(,);
build(,n);
solve();
}
}