- ???? 本文为????365天深度学习训练营中的学习记录博客
- ???? 原作者:K同学啊
????要求:
- 训练过程中保存效果最好的模型参数。
- 加载最佳模型参数识别本地的一张图片。
- 调整网络结构使测试集accuracy到达88%(重点)。
????拔高(可选):
- 调整模型参数并观察测试集的准确率变化。
- 尝试设置动态学习率。
- 测试集accuracy到达90%。
本周的代码相对于上周增加指定图片预测
与保存并加载模型
这个两个模块,在学习这个两知识点后,时间有余的同学请*探索更佳的模型结构以提升模型是识别准确率,模型的搭建是深度学习程度的重点。
???? 我的环境:
- 语言环境:Python3.8
- 编译器:Jupyter Lab
- 深度学习环境:Pytorch
一、 前期准备
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU。
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
2. 导入数据
import os,PIL,random,pathlib
data_dir = '/kaggle/input/monkey-images/monkey/'#这里路径要完整,记得最右边的/不要忘了,直接从数据集右边的类别的上一级目录复制路径即可
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[5] for path in data_paths] # 这里记得kaggle里面是/,然后后面的[]的索引里面记得取数据集的路径层级
classeNames
['Monkeypox', 'Others']
-
第一步:使用
pathlib.Path()
函数将字符串类型的文件夹路径转换为pathlib.Path
对象。 -
第二步:使用
glob()
方法获取data_dir
路径下的所有文件路径,并以列表形式存储在data_paths
中。 -
第三步:通过
split()
函数对data_paths
中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
中 -
第四步:打印
classeNames
列表,显示每个文件所属的类别名称。
total_datadir = '/kaggle/input/monkey-images/monkey/'
# 关于transforms.Compose的更多介绍可以参考:https://blog.****.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
Dataset ImageFolder Number of datapoints: 2142 Root location: /kaggle/input/monkey-images/monkey/ StandardTransform Transform: Compose( Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )
total_data.class_to_idx
{'Monkeypox': 0, 'Others': 1}
total_data.class_to_idx
是一个存储了数据集类别和对应索引的字典。在PyTorch的ImageFolder数据加载器中,根据数据集文件夹的组织结构,每个文件夹代表一个类别,class_to_idx字典将每个类别名称映射为一个数字索引。
具体来说,如果数据集文件夹包含两个子文件夹,比如Monkeypox和Others,class_to_idx字典将返回类似以下的映射关系:{'Monkeypox': 0, 'Others': 1}
3. 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x7823152d5b10>, <torch.utils.data.dataset.Subset at 0x78231534b970>)
train_size,test_size
(1713, 429)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32]) torch.int64
torch.utils.data.DataLoader()
参数详解
torch.utils.data.DataLoader
是 PyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader
构造函数接受多个参数,下面是一些常用的参数及其解释:
-
dataset(必需参数):这是你的数据集对象,通常是
torch.utils.data.Dataset
的子类,它包含了你的数据样本。 - batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1。
-
shuffle(可选参数):如果设置为
True
,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为False
。 - num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。
-
pin_memory(可选参数):如果设置为
True
,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为False
。 -
drop_last(可选参数):如果设置为
True
,则在最后一个小批次可能包含样本数小于batch_size
时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为False
。 - timeout(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。
- worker_init_fn(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。
二、构建简单的CNN网络
网络结构图(可单击放大查看):、
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24*50*50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
model
Using cuda device
Network_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=2, bias=True) )
三、 训练模型
1. 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2. 编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3. 编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4. 正式训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:57.5%, Train_loss:0.744, Test_acc:62.9%,Test_loss:0.714 Epoch: 2, Train_acc:65.9%, Train_loss:0.640, Test_acc:70.9%,Test_loss:0.591 Epoch: 3, Train_acc:72.3%, Train_loss:0.562, Test_acc:72.5%,Test_loss:0.566 Epoch: 4, Train_acc:75.4%, Train_loss:0.525, Test_acc:73.4%,Test_loss:0.540 Epoch: 5, Train_acc:77.3%, Train_loss:0.492, Test_acc:75.1%,Test_loss:0.526 Epoch: 6, Train_acc:78.7%, Train_loss:0.469, Test_acc:73.0%,Test_loss:0.547 Epoch: 7, Train_acc:80.7%, Train_loss:0.443, Test_acc:74.6%,Test_loss:0.515 Epoch: 8, Train_acc:82.4%, Train_loss:0.421, Test_acc:74.1%,Test_loss:0.508 Epoch: 9, Train_acc:83.2%, Train_loss:0.406, Test_acc:76.7%,Test_loss:0.473 Epoch:10, Train_acc:83.7%, Train_loss:0.398, Test_acc:78.3%,Test_loss:0.465 Epoch:11, Train_acc:84.8%, Train_loss:0.383, Test_acc:77.4%,Test_loss:0.472 Epoch:12, Train_acc:86.1%, Train_loss:0.364, Test_acc:79.3%,Test_loss:0.456 Epoch:13, Train_acc:87.0%, Train_loss:0.356, Test_acc:78.3%,Test_loss:0.449 Epoch:14, Train_acc:87.6%, Train_loss:0.343, Test_acc:80.9%,Test_loss:0.438 Epoch:15, Train_acc:88.7%, Train_loss:0.331, Test_acc:80.7%,Test_loss:0.461 Epoch:16, Train_acc:88.3%, Train_loss:0.319, Test_acc:79.7%,Test_loss:0.448 Epoch:17, Train_acc:89.0%, Train_loss:0.312, Test_acc:81.6%,Test_loss:0.425 Epoch:18, Train_acc:89.5%, Train_loss:0.301, Test_acc:80.9%,Test_loss:0.415 Epoch:19, Train_acc:90.0%, Train_loss:0.297, Test_acc:81.6%,Test_loss:0.430 Epoch:20, Train_acc:90.9%, Train_loss:0.286, Test_acc:80.9%,Test_loss:0.406 Done
四、 结果可视化
1. Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2. 指定图片进行预测
⭐torch.squeeze()详解
对数据的维度进行压缩,去掉维数为1的的维度。
函数原型:
t orch.squeeze(input, dim=None, *, out=None)
关键参数说明:
- input (Tensor):输入Tensor。
- dim (int, optional):如果给定,输入将只在这个维度上被压缩。
from PIL import Image
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
# plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='/kaggle/input/monkey-images/monkey/Monkeypox/M01_02_04.jpg',
model=model,
transform=train_transforms,
classes=classes)
预测结果是:Monkeypox
五、保存并加载模型
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully>
六、个人总结
学会了用模型预测图片,在准确率上还未到要求,换个GPU再跑一次。