【BZOJ】3140: [Hnoi2013]消毒

时间:2023-08-10 10:30:44

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3140


猜一发(显然)有结论:每次一定选择一个平面,即每次操作对答案的贡献都为$1$

首先可以考虑二维的情况。

二维不就是一个经典的最小点覆盖模型么,如果${(x,y)=1}$就把横纵轴上的点分别看为二分图的两边的点,最小点覆盖模型=最大匹配数。

三维?

${a*b*c<=5000}$显然${Max\left \{ a,b,c \right \}<=17}$
考虑枚举(搜索)最小的那一维,剩下的直接看(拍)成一个平面当成二维的做即可。


 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 1000100
#define llg long long
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
llg n,G,C,K,T,cnt,N,belong[maxn],bj[maxn]; vector<llg>a[maxn]; struct node
{
llg x,y,z;
}point[maxn]; void init()
{
llg x;
cnt=;
scanf("%lld%lld%lld",&C,&K,&G);
for (llg i=;i<=C;i++)
for (llg j=;j<=K;j++)
for (llg k=;k<=G;k++)
{
scanf("%lld",&x);
if (x) point[++cnt]=(node){i,j,k};
}
} bool find(llg x)
{
llg w=a[x].size(),v;
for (llg i=;i<w;i++)
{
v=a[x][i];
if (bj[v]) continue;
bj[v]=;
if (!belong[v] || find(belong[v]))
{
belong[v]=x; belong[x]=v;
return ;
}
}
return ;
} llg work(llg zt)
{
llg sum=; N=C+K;
for (llg i=;i<=N;i++) a[i].clear(),belong[i]=;
for (llg i=;i<G;i++) if ((zt&(<<i))==) sum++;
for (llg i=;i<=cnt;i++)
if (zt&(<<(point[i].z-)))
{
llg x=point[i].x,y=C+point[i].y;
a[x].push_back(y),a[y].push_back(x);
}
for (llg i=;i<=N;i++)
if (!belong[i])
{
for (llg j=;j<=N;j++) bj[j]=;
if (find(i)) sum++;
}
return sum;
} int main()
{
yyj("clear");
cin>>T;
while (T--)
{
init();
if (C<G) {swap(G,C); for (llg i=;i<=cnt;i++) swap(point[i].x,point[i].z); }
if (K<G) {swap(G,K); for (llg i=;i<=cnt;i++) swap(point[i].y,point[i].z); }
llg ans=(llg)1e16;
for (llg i=;i<(<<G);i++)
ans=min(work(i),ans);
printf("%lld\n",ans);
}
return ;
}