大语言模型中的MoE

时间:2024-11-30 07:04:50

1.概述

MoE代表“混合专家模型”(Mixture of Experts),这是一种架构设计,通过将不同的子模型(即专家)结合起来进行任务处理。与传统的模型相比,MoE结构能够动态地选择并激活其中一部分专家,从而显著提升模型的效率和性能。尤其在计算和参数规模上,MoE架构能够在保持较低计算开销的同时,扩展模型的能力,成为许多LLM的热门选择。

2.内容

本篇内容主要介绍MoE架构的两个核心组件:专家(Experts)和路由器(Router)。这两个组件在典型的基于LLM的架构中发挥着关键作用。专家是负责执行特定任务的子模型,而路由器则负责决定哪些专家需要在给定任务中被激活,从而优化计算效率和模型表现。

 2.1 什么是专家混合

混合专家模型(MoE)是一种创新技术,通过将多个专门的子模型(即“专家”)集成进大型语言模型(LLM)中,显著提升了模型的性能和效率。

MoE架构的核心由以下两个部分构成:

  • 专家(Experts):每个前馈神经网络层都配备了一组专家,这些专家是模型中的独立子网络,每次计算时,只有一部分专家会被激活参与处理。专家通常是具备特定任务能力的神经网络。
  • 路由器(Router)或门控网络(Gate Network):该组件负责根据输入数据(如令牌)决定哪些专家会处理特定任务。路由器根据模型的输入动态地选择最适合的专家,从而提高计算效率。

通过这种结构,MoE架构不仅在保持较低计算成本的同时,能够处理更多样化、复杂的任务,也能够根据需求扩展模型规模,从而提升LLM的整体表现。

值得注意的是,MoE中的“专家”并非专注于某一特定领域,如“心理学”或“生物学”。相反,这些专家主要专注于学习词汇层面的句法结构,而不是领域知识。因此,每个专家的作用更偏向于捕捉语言的基本模式和结构,而非专业领域的深度理解。

更具体地说,MoE中的“专家”专注于在特定上下文中处理特定的令牌。路由器(门控网络)根据输入数据的特征,动态选择最适合处理该数据的专家。这种机制使得模型能够根据任务需求灵活地调用不同的专家,从而提高处理效率和准确性。

 每个“专家”并不是独立的完整大型语言模型,而是嵌入在LLM架构中的一个子模型组件。它们与其他专家协同工作,共同提升整个模型的处理能力和效率。

2.2 密集层

为了更好地理解专家的作用以及它们的工作原理,我们首先需要了解MoE所替代的传统架构——密集层(Dense Layers)。

混合专家模型(MoE)构建于大型语言模型(LLM)的基本组成部分之一——前馈神经网络(FFNN)之上。需要注意的是,在标准的解码器-only Transformer架构中,FFNN通常在层归一化后被应用到每一层中。这是LLM处理信息的核心方式之一,而MoE的引入旨在通过引入多个专家模型替代传统的密集层,提升模型的表达能力和计算效率。

 前馈神经网络(FFNN)使模型能够基于注意力机制提取的上下文信息,进一步处理并捕捉数据中的复杂关系。然而,FFNN的规模随着层数增加而迅速膨胀。为了能够学习这些复杂的关系,FFNN通常会在输入信息的基础上进行扩展,这可能导致计算开销的大幅增加。

 2.3 稀疏层

在传统的Transformer架构中,前馈神经网络(FFNN)被称为密集模型,因为它的所有参数(包括权重和偏置)都会被激活并用于计算输出,没有任何信息被忽略。仔细分析密集模型时,我们可以看到,输入信息会激活所有的参数,每个参数在计算中都会发挥作用,从而导致计算复杂度和资源消耗较大。

 与密集模型不同,稀疏模型只激活一部分参数,这种方式与混合专家模型(MoE)紧密相连。具体来说,我们可以将密集模型拆分为多个“专家”子模型,重新训练它们,并在每次任务中仅激活一部分专家进行计算。这种方法不仅能减少计算开销,还能提高模型处理特定任务时的效率。

 这种方法的核心理念是,每个专家在训练过程中专注于学习不同的信息。到了推理阶段,根据任务的具体需求,系统只会激活最相关的专家。这样,面对不同的问题时,我们能够选择最适合的专家来进行高效处理。

 2.4 专家学习的内容

如前所述,专家并非专注于学习某一完整领域的知识,而是专注于捕捉更细粒度的信息。因此,将它们称为“专家”有时会让人误解,因为这些专家并不具备传统意义上在某一领域的深度专业知识。

 

 在解码器模型中,专家似乎并未表现出相同类型的专业化。尽管如此,这并不意味着所有专家在作用上是相同的。一个很好的例子可以参考《Mixtral 8x7B》论文,其中每个令牌都被标注为其首选专家,从而展示了专家选择的多样性和灵活性。

 

上图还展示了专家们更倾向于关注句法结构,而非特定领域的知识。因此,尽管解码器中的专家没有明确的专业化,它们在处理某些类型的令牌时却表现出一致性和特定的应用模式。

2.5 专家架构

虽然将专家看作是密集模型中的隐藏层并将其拆分成若*分进行可视化是一个有趣的方式,但实际上,专家通常是独立的、完整的前馈神经网络(FFNN)。每个专家在模型中扮演着独立的角色,执行特定的计算任务。

 由于大多数大型语言模型(LLM)包含多个解码器层,一个输入文本通常会在生成过程中经过多个专家的处理,每个专家负责不同的任务或处理不同的特征。这样,模型可以更有效地捕捉复杂的语言模式和语境信息。

 由于每个令牌可能会激活不同的专家,这导致模型在处理每个令牌时可能会选择不同的“路径”。这种动态选择使得模型能够灵活地根据不同的上下文需求进行优化。

 

 

更新后的解码器模块可视化将显示更多的前馈神经网络(FFNN),每个FFNN代表一个专家。这样,每个专家都拥有独立的计算路径,以便在处理不同任务时提供更具针对性的计算能力。

 3.路由

有了专家模型后,模型如何确定使用哪些专家呢?在专家之前,加入了一个路由器(或称门控网络),其作用是根据输入令牌的特征来决定激活哪个专家。路由器是一个前馈神经网络(FFNN),它会输出一组概率值,根据这些概率值来选择最适合当前任务的专家。

 

有了专家模型后,模型如何确定使用哪些专家呢?在专家之前,加入了一个路由器(或称门控网络),其作用是根据输入令牌的特征来决定激活哪个专家。路由器是一个前馈神经网络(FFNN),它会输出一组概率值,根据这些概率值来选择最适合当前任务的专家。

 

MoE层有两种实现方式:稀疏型和密集型混合专家模型。两者都依赖路由器来选择专家,但稀疏型MoE只激活少数几个专家,而密集型MoE则激活所有专家,只不过激活的比例和分布可能不同。这种设计使得模型在处理不同任务时可以灵活调节计算资源的分配。 

 例如,给定一组令牌,普通的MoE会将令牌分配给所有专家,而稀疏型MoE则只激活少数几个专家。在现有的LLM中,提到“MoE”时,通常指的是稀疏型MoE,因为它通过仅激活一部分专家来减少计算开销,这对于大型语言模型的高效运行至关重要。

 门控网络可以说是MoE中最为重要的部分,因为它不仅在推理时决定选择哪些专家,而且在训练过程中也起着关键作用。在最简单的形式下,输入(x)与路由器的权重矩阵(W)相乘,生成一个加权的输出,用于决定激活哪些专家。

 然后,我们对输出应用SoftMax函数,将其转化为每个专家的概率分布G(x)。这个概率分布决定了每个专家被选中的可能性,从而指导路由器选择最合适的专家进行处理。

 路由器根据概率分布选择最匹配的专家来处理给定的输入。最终,模型将每个选定专家的输出与相应的路由器概率相乘,并将所有结果相加,得到最终的输出。

 

 然而,这种简单的机制可能会导致路由器频繁选择相同的专家,因为某些专家的学习速度可能快于其他专家,从而使得它们在选择过程中占据主导地位。

这种不均衡的选择不仅会导致某些专家被频繁激活,而其他专家几乎没有机会参与训练,还会引发训练和推理阶段的问题。因此,我们希望在训练和推理过程中保持专家间的平衡,这就是所谓的负载均衡。负载均衡有助于避免某些专家过度拟合,提高模型的多样性和泛化能力。 

 4.小节

至此,我们的混合专家模型(MoE)之旅圆满结束!希望这篇文章能帮助你更好地理解这种创新技术的潜力。如今,几乎所有的模型架构都包含了至少一种MoE变体,MoE看起来将成为未来技术中的重要组成部分。

5.结束语

这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

另外,博主出新书了《深入理解Hive》、同时已出版的《Kafka并不难学》和《Hadoop大数据挖掘从入门到进阶实战》也可以和新书配套使用,喜欢的朋友或同学, 可以在公告栏那里点击购买链接购买博主的书进行学习,在此感谢大家的支持。关注下面公众号,根据提示,可免费获取书籍的教学视频。