YOLOv8最新改进系列
GSConv+Slim Neckr提出的论文戳这
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
截止到发稿,B站YOLOv8最新改进系列的源码包已更新了20种!
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!
YOLOv8最新改进系列:YOLOv8+GSConv+Slim Neck,有效提升小目标检测效果!
- YOLOv8最新改进系列
- 一、GSConv+Slim Neck概述
- 1.1 Slim Neck结构图
- 1.2 GSConv结构图
- 二、YOLOv8+GSConv+Slim Neck
- 2.1 修改YAML文件
- 2.2 新建
- 2.3 修改
- 2.3.1 导包
- 2.3.2 注册(包含很多改进,不需要的可删)
- 三、验证是否成功即可
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!
一、GSConv+Slim Neck概述
1.1 Slim Neck结构图
1.2 GSConv结构图
贡献:作者提出了一种新方法 GSConv 来减轻模型的复杂度并保持准确性。GSConv可以更好地平衡模型的准确性和速度。并且,提供了一种设计范式Slim Neck,以实现检测器更高的计算成本效益。
实验过程中,与原始网络相比,改进方法获得了最优秀的检测结果。
实验结果如图:
开始改进YOLOv8+GSConv+Slim Neck!
二、YOLOv8+GSConv+Slim Neck
2.1 修改YAML文件
# Ultralytics YOLO ????, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see /tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, . 'model=' will call with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1,GSConv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, , [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, VoVGSCSP, [512]] # 12
- [-1, 1, , [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, VoVGSCSP, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, VoVGSCSP, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, VoVGSCSP, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
在主干这里我只添加了一个GSConv模块,根据实验需要可以灵活配置(head同)!
2.2 新建
核心代码示例如下:
class GSConv(nn.Module):
# GSConv /AlanLi1997/slim-neck-by-gsconv
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
super().__init__()
c_ = c2 // 2
self.cv1 = Conv(c1, c_, k, s, None, g, 1, act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, 1 , act)
def forward(self, x):
x1 = self.cv1(x)
x2 = torch.cat((x1, self.cv2(x1)), 1)
# shuffle
# y = ([0], 2, [1] // 2, [2], [3])
# y = (0, 2, 1, 3, 4)
# return ([0], -1, [3], [4])
b, n, h, w = x2.data.size()
b_n = b * n // 2
y = x2.reshape(b_n, 2, h * w)
y = y.permute(1, 0, 2)
y = y.reshape(2, -1, n // 2, h, w)
return torch.cat((y[0], y[1]), 1)
class GSConvns(GSConv):
# GSConv with a normative-shuffle /AlanLi1997/slim-neck-by-gsconv
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
super().__init__(c1, c2, k=1, s=1, g=1, act=True)
c_ = c2 // 2
self.shuf = nn.Conv2d(c_ * 2, c2, 1, 1, 0, bias=False)
def forward(self, x):
x1 = self.cv1(x)
x2 = torch.cat((x1, self.cv2(x1)), 1)
# normative-shuffle, TRT supported
return nn.ReLU(self.shuf(x2))
class GSBottleneck(nn.Module):
# GS Bottleneck /AlanLi1997/slim-neck-by-gsconv
def __init__(self, c1, c2, k=3, s=1, e=0.5):
super().__init__()
c_ = int(c2*e)
# for lighting
self.conv_lighting = nn.Sequential(
GSConv(c1, c_, 1, 1),
GSConv(c_, c2, 3, 1, act=False))
self.shortcut = Conv(c1, c2, 1, 1, act=False)
def forward(self, x):
return self.conv_lighting(x) + self.shortcut(x)
class DWConv(Conv):
# Depth-wise convolution class
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
class VoVGSCSP(nn.Module):
# VoVGSCSP module with GSBottleneck
def __init__(self, cx, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
# self.gc1 = GSConv(c_, c_, 1, 1)
# self.gc2 = GSConv(c_, c_, 1, 1)
# = GSBottleneck(c_, c_, 1, 1)
self.gsb = nn.Sequential(*(GSBottleneck(c_, c_, e=1.0) for _ in range(n)))
self.res = Conv(c_, c_, 3, 1, act=False)
self.cv3 = Conv(2 * c_, c2, 1) #
def forward(self, x):
x1 = self.gsb(self.cv1(x))
y = self.cv2(x)
return self.cv3(torch.cat((y, x1), dim=1))
class VoVGSCSPC(VoVGSCSP):
# cheap VoVGSCSP module with GSBottleneck
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2)
c_ = int(c2 * 0.5) # hidden channels
self.gsb = GSBottleneckC(c_, c_, 1, 1)
2.3 修改
2.3.1 导包
from ultralytics.nn. SlimNeck import VoVGSCSP, VoVGSCSPC, GSConv
2.3.2 注册(包含很多改进,不需要的可删)
if m in (Classify, Conv, GGhostRegNet, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, SEAttention,ContextAggregation, BoTNet, CBAM,LightConv,RepConv, SpatialAttention,Involution, CARAFE, VoVGSCSP, VoVGSCSPC,GSConv,HorBlock, SwinTransformer):
三、验证是否成功即可
执行命令
python train.py
示例如图:
改完收工!
关注B站:AI学术叫叫兽
从此走上科研快速路
遥遥领先同行!!!!
详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!
AI学术叫叫兽er在这!家人们,给我遥遥领先!!!