##plt 同时显示多幅图像
import as plt
()
(1,2,1)
(images[i])
(1,2,2)
(maskes[i])
()
以下转自:/yinxiangnan-charles/p/
在 python 中除了用 opencv,也可以用 matplotlib 和 PIL 这两个库操作图片。本人偏爱 matpoltlib,因为它的语法更像 matlab。
一、matplotlib
1. 显示图片
import as plt # plt 用于显示图片
import as mpimg # mpimg 用于读取图片
import numpy as np
lena = ('') # 读取和代码处于同一目录下的
# 此时 lena 就已经是一个 了,可以对它进行任意处理
#(512, 512, 3)
(lena) # 显示图片
('off') # 不显示坐标轴
()
2. 显示某个通道
# 显示图片的第一个通道
lena_1 = lena[:,:,0]
('lena_1')
()
# 此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数,有如下几种添加方法:
('lena_1', cmap='Greys_r')
()
img = ('lena_1')
img.set_cmap('gray') # 'hot' 是热量图
()
3. 将 RGB 转为灰度图
matplotlib 中没有合适的函数可以将 RGB 图转换为灰度图,可以根据公式自定义一个:
def rgb2gray(rgb):
return (rgb[...,:3], [0.299, 0.587, 0.114])
gray = rgb2gray(lena)
# 也可以用 (gray, cmap = plt.get_cmap('gray'))
(gray, cmap='Greys_r')
('off')
()
4. 对图像进行放缩
这里要用到 scipy
from scipy import misc
lena_new_sz = (lena, 0.5) # 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸
(lena_new_sz)
('off')
()
5. 保存图像
5.1 保存 matplotlib 画出的图像
该方法适用于保存任何 matplotlib 画出的图像,相当于一个 screencapture。
(lena_new_sz)
('off')
('lena_new_sz.png')
5.2 将 array 保存为图像
from scipy import misc
('lena_new_sz.png', lena_new_sz)
5.3 直接保存 array
读取之后还是可以按照前面显示数组的方法对图像进行显示,这种方法完全不会对图像质量造成损失
('lena_new_sz', lena_new_sz) # 会在保存的名字后面自动加上.npy
img = ('lena_new_sz.npy') # 读取前面保存的数组
二、PIL
1. 显示图片
from PIL import Image
im = ('')
()
2. 将 PIL Image 图片转换为 numpy 数组
im_array = (im)
# 也可以用 (im) 区别是 () 是深拷贝,() 是浅拷贝
3. 保存 PIL 图片
直接调用 Image 类的 save 方法
from PIL import Image
I = ('')
('new_lena.png')
4. 将 numpy 数组转换为 PIL 图片
这里采用 读入图片数组,注意这里读入的数组是 float32 型的,范围是 0-1,而 数据是 uinit8 型的,范围是0-255,所以要进行转换:
import as mpimg
from PIL import Image
lena = ('') # 这里读入的数据是 float32 型的,范围是0-1
im = (np.uinit8(lena*255))
()
5. RGB 转换为灰度图
from PIL import Image
I = ('')
()
L = ('L')
()