万字长文解读机器学习——降维-总结

时间:2024-11-13 21:04:42
  • 线性降维方法:适用于数据可以通过线性变换表示的情况,计算简单、可解释性强,但无法处理复杂的非线性结构。
  • 非线性降维方法:适用于数据结构复杂的情况,能够捕捉数据中的非线性关系,但计算复杂度高,结果难以解释。

选择合适的降维方法取决于数据的特点和应用场景。对于具有简单线性关系的数据,线性降维方法通常更有效;对于具有复杂非线性结构的数据,非线性降维方法能够更好地揭示数据的潜在结构。