本项目利用python以及opencv实现信用卡的数字识别
前期准备
- 导入工具包
- 定义功能函数
模板图像处理
- 读取模板图像 cv2.imread(img)
- 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 二值化 cv2.threshold()
- 轮廓 - 轮廓
信用卡图像处理
- 读取信用卡图像 cv2.imread(img)
- 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- 礼帽处理 cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
- Sobel边缘检测 cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
- 闭操作 cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
- 计算轮廓 cv2.findContours
- 模板检测 cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)
原始数据展示
结果展示
1 前期准备
1
2
3
4
5
6
7
8
|
# 导入工具包
# opencv读取图片的格式为b g r
# matplotlib图片的格式为 r g b
import numpy as np
import cv2
from imutils import contours
import matplotlib.pyplot as plt
% matplotlib inline
|
1
2
3
4
|
# 信用卡的位置
predict_card = "images/credit_card_01.png"
# 模板的位置
template = "images/ocr_a_reference.png"
|
1
2
3
4
5
6
7
|
# 指定信用卡类型
FIRST_NUMBER = {
"3" : "American Express" ,
"4" : "Visa" ,
"5" : "MasterCard" ,
"6" : "Discover Card"
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
# 定义一些功能函数
# 对框进行排序
def sort_contours(cnts, method = "left-to-right" ):
reverse = False
i = 0
if method = = "right-to-left" or method = = "bottom-to-top" :
reverse = True
if method = = "top-to-bottom" or method = = "bottom-to-top" :
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w
(cnts, boundingBoxes) = zip ( * sorted ( zip (cnts, boundingBoxes),
key = lambda b: b[ 1 ][i], reverse = reverse))
return cnts, boundingBoxes
# 调整图片尺寸大小
def resize(image, width = None , height = None , inter = cv2.INTER_AREA):
dim = None
(h, w) = image.shape[: 2 ]
if width is None and height is None :
return image
if width is None :
r = height / float (h)
dim = ( int (w * r), height)
else :
r = width / float (w)
dim = (width, int (h * r))
resized = cv2.resize(image, dim, interpolation = inter)
return resized
# 定义cv2展示函数
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey( 0 )
cv2.destroyAllWindows()
|
2 对模板图像进行预处理操作
读取模板图像
1
2
3
4
|
# 读取模板图像
img = cv2.imread(template)
cv_show( "img" ,img)
plt.imshow(img)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e04ad128>
|
模板图像转灰度图像
1
2
3
4
|
# 转灰度图
ref = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv_show( "ref" ,ref)
plt.imshow(ref)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e25d9e48>
|
转为二值图像
1
2
3
|
ref = cv2.threshold(ref, 10 , 255 ,cv2.THRESH_BINARY_INV)[ 1 ]
cv_show( "ref" ,ref)
plt.imshow(ref)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e2832a90>
|
计算轮廓
1
2
3
4
5
6
7
8
|
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓
# 在二值化后的图像中计算轮廓
refCnts,hierarchy = cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
# 在原图上画出轮廓
cv2.drawContours(img,refCnts, - 1 ,( 0 , 0 , 255 ), 3 )
cv_show( "img" ,img)
plt.imshow(img)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e256f908>
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
print (np.array(refCnts).shape)
# 排序,从左到右,从上到下
refCnts = sort_contours(refCnts,method = "left-to-right" )[ 0 ]
digits = {}
# 遍历每一个轮廓
for (i, c) in enumerate (refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) = cv2.boundingRect(c)
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, ( 57 , 88 ))
# 每一个数字对应每一个模板
digits[i] = roi
|
(10,)
3 对信用卡进行处理
初始化卷积核
1
2
|
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, ( 9 , 3 ))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, ( 5 , 5 ))
|
读取信用卡
1
2
3
|
image = cv2.imread(predict_card)
cv_show( "image" ,image)
plt.imshow(image)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e294c9b0>
|
对图像进行预处理操作
1
2
3
4
5
6
|
# 先对图像进行resize操作
image = resize(image,width = 300 )
# 灰度化处理
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv_show( "gray" ,gray)
plt.imshow(gray)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e255d828>
|
对图像礼帽操作
- 礼帽 = 原始输入-开运算结果
- 开运算:先腐蚀,再膨胀
- 突出更明亮的区域
1
2
3
|
tophat = cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
cv_show( "tophat" ,tophat)
plt.imshow(tophat)
|
1
|
< matplotlib.image.AxesImage at 0x2b2eb008e48>
|
用Sobel算子边缘检测
1
2
3
4
5
6
7
8
|
gradX = cv2.Sobel(tophat, ddepth = cv2.CV_32F, dx = 1 , dy = 0 , ksize = - 1 )
gradX = np.absolute(gradX)
(minVal, maxVal) = (np. min (gradX), np. max (gradX))
gradX = ( 255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype( "uint8" )
print (np.array(gradX).shape)
cv_show( "gradX" ,gradX)
plt.imshow(gradX)
|
1
2
|
(189, 300)
< matplotlib.image.AxesImage at 0x2b2e0797400>
|
对图像闭操作
- 闭操作:先膨胀,再腐蚀
- 可以将数字连在一起
1
2
3
|
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show( "gradX" ,gradX)
plt.imshow(gradX)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e097cc88>
|
1
2
3
4
|
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0 , 255 ,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[ 1 ]
cv_show( "thresh" ,thresh)
plt.imshow(thresh)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e24a0dd8>
|
1
2
3
4
|
# 再进行一次闭操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show( "thresh" ,thresh)
plt.imshow(thresh)
|
1
|
< matplotlib.image.AxesImage at 0x2b2e25fe748>
|
计算轮廓
1
2
3
4
5
6
|
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts, - 1 ,( 0 , 0 , 255 ), 3 )
cv_show( "img" ,cur_img)
plt.imshow(cur_img)
|
1
|
< matplotlib.image.AxesImage at 0x2b2eb17c780>
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
locs = []
# 遍历轮廓
for (i, c) in enumerate (cnts):
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float (h)
# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5 and ar < 4.0 :
if (w > 40 and w < 55 ) and (h > 10 and h < 20 ):
#符合的留下来
locs.append((x, y, w, h))
# 将符合的轮廓从左到右排序
locs = sorted (locs, key = lambda x:x[ 0 ])
output = []
|
模板匹配
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate (locs):
# initialize the list of group digits
groupOutput = []
# 根据坐标提取每一个组
group = gray[gY - 5 :gY + gH + 5 , gX - 5 :gX + gW + 5 ]
cv_show( "group" ,group)
# 预处理
group = cv2.threshold(group, 0 , 255 ,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[ 1 ]
cv_show( "group" ,group)
# 计算每一组的轮廓
digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,method = "left-to-right" )[ 0 ]
# 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, ( 57 , 88 ))
cv_show( "roi" ,roi)
# 计算匹配得分
scores = []
# 在模板中计算每一个得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合适的数字
groupOutput.append( str (np.argmax(scores)))
# 画出来
cv2.rectangle(image, (gX - 5 , gY - 5 ),(gX + gW + 5 , gY + gH + 5 ), ( 0 , 0 , 255 ), 1 )
cv2.putText(image, "".join(groupOutput), (gX, gY - 15 ),cv2.FONT_HERSHEY_SIMPLEX, 0.65 , ( 0 , 0 , 255 ), 2 )
# 得到结果
output.extend(groupOutput)
|
1
2
3
4
5
|
# 打印结果
print ( "Credit Card Type: {}" . format (FIRST_NUMBER[output[ 0 ]]))
print ( "Credit Card #: {}" . format ("".join(output)))
cv_show( "Image" ,image)
plt.imshow(image)
|
1
2
3
4
5
6
7
8
|
Credit Card Type: Visa
Credit Card #: 4000123456789010
< matplotlib.image.AxesImage at 0x2b2eb040748>
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Mind_programmonkey/article/details/99650303