计算
- 求极限 lim n → ∞ ( 1 n 2 + 1 2 + 1 n 2 + 2 2 + ⋯ + 1 n 2 + n 2 ) \mathop{\lim }\limits_{n \to \infty } \left( \frac{1}{ {\sqrt {n^2 + 1^2} }} + \frac{1}{ {\sqrt {n^2 + 2^2} }} + \cdots + \frac{1}{ {\sqrt {n^2 + n^2} }} \right) n→∞lim(n2+121+n2+221+⋯+n2+n21)。
- 求极限 lim x → 0 cos x − e − x 2 2 x 2 tan 2 x \mathop{\lim }\limits_{x \to 0} \frac{\cos x - e^{ - \frac{x^2}{2}}}{x^2 \tan^2 x} x→0limx2tan2xcosx−e−2x2。
- 设 f ( x ) = ∫ 1 x e − t 2 d t f(x) = \int_1^x e^{-t^2} \, \mathrm{d}t f(x)=∫1xe−t2dt,求 ∫ 0 1 x 2 f ( x ) d x \int_0^1 x^2 f(x) \, \mathrm{d}x ∫01x2f(x)dx。
- 设 u = x 2 + y 2 + z 2 u = x^2 + y^2 + z^2 u=x2+y2+z2, z = f ( x , y ) z = f(x,y) z=f(x,y) 且 x 2 + y 2 + z 2 = 3 x y z x^2 + y^2 + z^2 = 3xyz x2+y2+z2=3xyz,考虑使用隐函数,求 u x x u_{xx} uxx。
解答 1:
lim n → ∞ ( 1 n 2 + 1 2 + 1 n 2 + 2 2 + ⋯ + 1 n 2 + n 2 ) = lim n → ∞ 1 n ∑ k = 1 n 1 1 + ( k n ) 2 = ∫ 0 1 1 1 + x 2 d x = ∫ 0 π 4 sec t ( sec t + tan t ) sec t + tan t d t = ln ∣ sec t + tan t ∣ ∣ 0 π 4 = ln ( 2 + 1 ) \begin{align*} \mathop{\lim }\limits_{n \to \infty } \left( \frac{1}{ {\sqrt{n^2 + 1^2}}} + \frac{1}{ {\sqrt{n^2 + 2^2}}} + \cdots + \frac{1}{ {\sqrt{n^2 + n^2}}} \right) &= \mathop{\lim }\limits_{n \to \infty } \frac{1}{n} \sum_{k = 1}^n \frac{1}{ {\sqrt{1 + \left(\frac{k}{n}\right)^2}}} \\ &= \int_0^1 \frac{1}{ {\sqrt{1 + x^2}}} \, \mathrm{d}x \\ &= \int_0^{\frac{\pi }{4}} \frac{\sec t \left(\sec t + \tan t\right)}{\sec t + \tan t} \, \mathrm{d}t \\ &= \ln \left| \sec t + \tan t \right| \bigg|_0^{\frac{\pi }{4}} \\ &= \ln \left( \sqrt{2} + 1 \right) \end{align*} n→∞lim(n2+121+n2+221+⋯+n2+n21)=n→∞limn1k=1∑n1+(nk)21=∫011+x21dx=∫04πsect+tantsect(sect+tant)dt=ln∣sect+tant∣ 04π=ln(2+1)
解答 2:
lim x → 0 cos x − e − x 2 2 x 2 tan 2 x = lim x → 0 cos x − e − x 2 2 x 4 = lim x → 0 ( 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) ) − ( 1 − x 2 2 + ( − x 2 2 ) 2 2 ! + o ( x 4 ) ) x 4 = lim x → 0 1 6 x 4 + o ( x 4 ) x 4 = 1 6 \begin{align*} \mathop{\lim }\limits_{x \to 0} \frac{\cos x - e^{ - \frac{x^2}{2}}}{x^2 \tan^2 x} &= \mathop{\lim }\limits_{x \to 0} \frac{\cos x - e^{ - \frac{x^2}{2}}}{x^4} \\ &= \mathop{\lim }\limits_{x \to 0} \frac{\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)\right) - \left(1 - \frac{x^2}{2} + \frac{\left(- \frac{x^2}{2}\right)^2}{2!} + o(x^4)\right)}{x^4} \\ &= \mathop{\lim }\limits_{x \to 0} \frac{\frac{1}{6} x^4 + o(x^4)}{x^4} \\ &= \frac{1}{6} \\ \end{align*} x→0limx2tan2x相关文章