python中yield深入理解

时间:2022-01-05 03:58:33

欢迎使用Markdown编辑器写博客

yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行。也就是说,yield返回函数,交给调用者一个返回值,然后再“瞬移”回去,让函数继续运行, 直到吓一跳yield语句再返回一个新的值。
使用yield返回后,调用者实际得到的是一个迭代器对象,迭代器的值就是返回值,而调用该迭代器的next()方法会导致该函数恢复yield语句的执行环境继续往下跑,直到遇到下一个yield为止,如果遇不到yield,就会抛出异常表示迭代结束。
看一个例子:

>>> def test_yield():
... yield 1
... yield 2
... yield (1,2)
...
>>> a = test_yield()
>>> a.next()
1
>>> a.next()
2
>>> a.next()
(1, 2)
>>> a.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
  1. 包含yield的函数

假如你看到某个函数包含了yield,这意味着这个函数已经是一个Generator,它的执行会和其他普通的函数有很多不同。比如下面的简单的函数:

def h():  
print 'To be brave'
yield 5
h()

可以看到,调用h()之后,print 语句并没有执行!这就是yield,那么,如何让print 语句执行呢?这就是后面要讨论的问题,通过后面的讨论和学习,就会明白yield的工作原理了。

Python2.5以前,Python yield是一个语句,但现在2.5中,yield是一个表达式(Expression),比如:
m = yield 5
表达式(yield 5)的返回值将赋值给m,所以,认为 m = 5 是错误的。那么如何获取(yield 5)的返回值呢?需要用到后面要介绍的send(msg)方法。
2. 透过next()语句看原理
现在,我们来揭晓yield的工作原理。我们知道,我们上面的h()被调用后并没有执行,因为它有yield表达式,因此,我们通过next()语句让它执行。next()语句将恢复Generator执行,并直到下一个yield表达式处。比如:

def h():
print ‘Wen Chuan’
yield 5
print ‘Fighting!’
c = h()
c.next()
c.next()
调用后,h()开始执行,直到遇到yield 5,因此输出结果:
Wen Chuan
当我们再次调用c.next()时,会继续执行,直到找到下一个yield表达式。由于后面没有Python yield了,因此会拋出异常:

Wen Chuan
Fighting!
Traceback (most recent call last):
File “/home/evergreen/Codes/yidld.py”, line 11, in
c.next()
StopIteration
3. send(msg) 与 next()
了解了next()如何让包含yield的函数执行后,我们再来看另外一个非常重要的函数send(msg)。其实next()和send()在一定意义上作用是相似的,区别是send()可以传递yield表达式的值进去,而next()不能传递特定的值,只能传递None进去。因此,我们可以看做c.next() 和 c.send(None) 作用是一样的。来看这个例子:

def h():  
print 'Wen Chuan',
m = yield 5 # Fighting!
print m
d = yield 12
print 'We are together!'
c = h()
c.next() #相当于c.send(None)
c.send('Fighting!') #(yield 5)

表达式被赋予了’Fighting!’输出的结果为:
Wen Chuan Fighting!
需要提醒的是,第一次调用时,请使用next()语句或是send(None),不能使用send发送一个非None的值,否则会出错的,因为没有Python yield语句来接收这个值。
4. send(msg) 与 next()的返回值

send(msg) 和 next()是有返回值的,它们的返回值很特殊,返回的是下一个yield表达式的参数。比如yield 5,则返回 5 。到这里,是不是明白了一些什么东西?本文第一个例子中,通过for i in alist 遍历 Generator,其实是每次都调用了alist.Next(),而每次alist.Next()的返回值正是yield的参数,即我们开始认为被压进去的东东。我们再延续上面的例子:

def h():  
print 'Wen Chuan',
m = yield 5 # Fighting!
print m
d = yield 12
print 'We are together!'
c = h()
m = c.next() #m 获取了yield 5 的参数值 5
d = c.send('Fighting!') #d 获取了yield 12 的参数值12
print 'We will never forget the date', m, '.', d输出结果:
Wen Chuan Fighting!
We will never forget the date 5 . 12

throw() 与 close()中断 Generator
中断Generator是一个非常灵活的技巧,可以通过throw抛出一个GeneratorExit异常来终止Generator。Close()方法作用是一样的,其实内部它是调用了throw(GeneratorExit)的。我们看:

def close(self):
try:
self.throw(GeneratorExit)
except (GeneratorExit, StopIteration):
pass
else:
raise RuntimeError(“generator ignored GeneratorExit”)
Other exceptions are not caught
因此,当我们调用了close()方法后,再调用next()或是send(msg)的话会抛出一个异常:

Traceback (most recent call last):
File “/home/evergreen/Codes/yidld.py”, line 14, in
d = c.send(‘Fighting!’) #d 获取了yield 12 的参数值12
StopIteration