快速上手:基于 DiT 和 3D VAE 的文生视频生成架构(复制即用)

时间:2024-10-25 07:17:45

在文本生成视频(Text-to-Video)任务中,如何将文本信息转化为时空连贯的视频序列是一个挑战性的问题。本文将介绍一种基于 DiT(Diffusion Transformer)3D VAE(Variational Autoencoder) 的架构,逐步解读其关键模块的设计与实现,并提供代码示例帮助大家理解。

架构概述

该架构主要包括以下几个模块:

  1. 文本编码器(Text Encoder):将输入的文本嵌入为高维语义表示,用于指导视频生成。
  2. DiT(扩散模型):用 Transformer 架构生成每一帧或多帧视频的潜在表示。
  3. 3D VAE:通过 3D 卷积解码整个视频的潜在表示,生成时空一致的视频帧序列。
  4. 时序注意力(Temporal Attention):通过多头自注意力机制增强视频帧之间的连贯性,确保视频的流畅性和时序一致性。

模块设计与代码实现

1. 文本编码器

文本编码器的作用是将输入的文本描述转换为高维的向量表示。这一向量表示用于引导视频生成过程。

class TextEncoder(nn.Module):
    def __init__(self, embed_dim):
        super().__init__()
        self.encoder = nn.Linear(embed_dim, embed_dim)

    def forward(self, text):
        return self.encoder(text)

2. DiT 模型

DiT 是一种基于扩散模型的架构,用于生成潜在视频帧表示。它通过 Transformer 编码文本嵌入,并在每个时间步上生成相应的潜在向量。

class DiTForVideo(nn.Module):
    def __init__(self, embed_dim, num_frames, latent_dim):
        super().__init__()
        encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=8)
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=6)
        self.num_frames = num_frames
        self.fc = nn.Linear(embed_dim, latent_dim)

    def forward(self, text_embedding):
        video_latents = []
        for i in range(self.num_frames):
            frame_embedding = text_embedding + (i / self.num_frames)
            transformer_input = frame_embedding.unsqueeze(0)
            transformer_output = self.transformer(transformer_input).squeeze(0)
            latent = self.fc(transformer_output)
            video_latents.append(latent)
        return torch.stack(video_latents, dim=1)

3. 3D VAE 解码器

3D VAE 用于解码整个视频序列的潜在表示,生成视频帧。与 2D VAE 不同,3D VAE 使用 3D 卷积捕捉时间维度的信息,确保帧与帧之间的时序一致性。

class VAE3D(nn.Module):
    def __init__(self, latent_dim, channels, num_frames, height, width):
        super(VAE3D, self).__init__()
        self.latent_dim = latent_dim
        self.channels = channels
        self.num_frames = num_frames
        self.height = height
        self.width = width
        
        # 3D 卷积编码器
        self.encoder = nn.Sequential(
            nn.Conv3d(channels, 64, kernel_size=4, stride=2, padding=1),
            nn.ReLU(),
            nn.Conv3d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.ReLU(),
            nn.Flatten(),
            nn.Linear(128 * (num_frames // 4) * (height // 4) * (width // 4), 512),
            nn.ReLU()
        )
        self.fc_mu = nn.Linear(512, latent_dim)
        self.fc_logvar = nn.Linear(512, latent_dim)

        # 3D 卷积解码器
        self.decoder_fc = nn.Sequential(
            nn.Linear(latent_dim, 128 * (num_frames // 4) * (height // 4) * (width // 4)),
            nn.ReLU()
        )
        self.decoder = nn.Sequential(
            nn.ConvTranspose3d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.ReLU(),
            nn.ConvTranspose3d(64, channels, kernel_size=4, stride=2, padding=1),
            nn.Sigmoid()
        )

    def encode(self, x):
        h = self.encoder(x)
        mu = self.fc_mu(h)
        logvar = self.fc_logvar(h)
        return mu, logvar

    def decode(self, z):
        z = self.decoder_fc(z)
        z = z.view(-1, 128, self.num_frames // 4, self.height // 4, self.width // 4)
        return self.decoder(z)

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def forward(self, x):
        mu, logvar = self.encode(x)
        z = self.reparameterize(mu, logvar)
        recon = self.decode(z)
        return recon, mu, logvar

4. Temporal Attention

时序注意力机制通过多头自注意力机制捕捉视频帧之间的全局依赖关系,确保帧序列的时序一致性。

class TemporalAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.attention = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True)

    def forward(self, video_frames):
        b, t, c, h, w = video_frames.shape
        video_frames_flat = video_frames.view(b, t, -1)
        attn_output, _ = self.attention(video_frames_flat, video_frames_flat, video_frames_flat)
        enhanced_video_frames = attn_output.view(b, t, c, h, w)
        return enhanced_video_frames

集成架构与完整流程

接下来,我们将所有模块集成起来,构建一个完整的文生视频生成架构,并提供示例代码展示其工作流程。

# 初始化各模块
text_encoder = TextEncoder(embed_dim=512)
dit_model = DiTForVideo(embed_dim=512, num_frames=8, latent_dim=256)
vae = VAE3D(latent_dim=256, channels=3, num_frames=8, height=64, width=64)
temporal_attention = TemporalAttention(embed_dim=3 * 64 * 64, num_heads=8)

# 生成伪数据进行测试
text_embeddings = torch.randn(4, 512)  # 4个样本的文本嵌入
encoded_text = text_encoder(text_embeddings)

# 生成潜在视频帧表示
latent_video = dit_model(encoded_text)

# 通过 3D VAE 解码整个潜在视频序列
latent_video = latent_video.unsqueeze(2).unsqueeze(3)  # 添加空间维度以适配 3D VAE
decoded_video = vae.decode(latent_video)

# 通过 TemporalAttention 增强帧序列的连贯性
enhanced_video_frames = temporal_attention(decoded_video)

# 打印输出的形状
print("解码后视频帧形状:", decoded_video.shape)           # [batch_size, num_frames, channels, height, width]
print("增强后视频帧形状:", enhanced_video_frames.shape)   # [batch_size, num_frames, channels, height, width]

完整代码

import torch
import torch.nn as nn

# 参数设置
batch_size = 4   # 批次大小
num_frames = 8   # 视频帧数量
channels = 3     # 视频通道(RGB)
height = 64      # 视频帧的高度
width = 64       # 视频帧的宽度
embed_dim = 512  # 文本嵌入维度
latent_dim = 256 # VAE潜在空间维度
num_heads = 8    # 注意力机制的头数

# ========== 模块定义 ========== #

# 定义一个简单的文本编码器
class TextEncoder(nn.Module):
    def __init__(self, embed_dim):
        super().__init__()
        self.encoder = nn.Linear(embed_dim, embed_dim)

    def forward(self, text):
        return self.encoder(text)

# 定义 DiT 模型(生成潜在视频帧表示)
class DiTForVideo(nn.Module):
    def __init__(self, embed_dim, num_frames, latent_dim):
        super().__init__()
        encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=8)
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=6)
        self.num_frames = num_frames
        self.fc = nn.Linear(embed_dim, latent_dim)

    def forward(self, text_embedding):
        video_latents = []
        for i in range(self.num_frames):
            frame_embedding = text_embedding + (i / self.num_frames)
            transformer_input = frame_embedding.unsqueeze(0)
            transformer_output = self.transformer(transformer_input).squeeze(0)
            latent = self.fc(transformer_output)
            video_latents.append(latent)
        return torch.stack(video_latents, dim=1)

# 定义 3D VAE 模型
class VAE3D(nn.Module):
    def __init__(self, latent_dim, channels, num_frames, height, width):
        super(VAE3D, self).__init__()
        self.latent_dim = latent_dim
        self.channels = channels
        self.num_frames = num_frames
        self.height = height
        self.width = width
        
        # 3D 卷积编码器
        self.encoder = nn.Sequential(
            nn.Conv3d(channels, 64, kernel_size=4, stride=2, padding=1),
            nn.ReLU(),
            nn.Conv3d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.ReLU(),
            nn.Flatten(),
            nn.Linear(128 * (num_frames // 4) * (height // 4) * (width // 4), 512),
            nn.ReLU()
        )
        self.fc_mu = nn.Linear(512, latent_dim)
        self.fc_logvar = nn.Linear(512, latent_dim)

        # 3D 卷积解码器
        self.decoder_fc = nn.Sequential(
            nn.Linear(latent_dim, 128 * (num_frames // 4) * (height // 4) * (width // 4)),
            nn.ReLU()
        )
        self.decoder = nn.Sequential(
            nn.ConvTranspose3d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.ReLU(),
            nn.ConvTranspose3d(64, channels, kernel_size=4, stride=2, padding=1),
            nn.Sigmoid()
        )

    def encode(self, x):
        h = self.encoder(x)
        mu = self.fc_mu(h)
        logvar = self.fc_logvar(h)
        return mu, logvar

    def decode(self, z):
        z = self.decoder_fc(z)
        z = z.view(-1, 128, self.num_frames // 4, self.height // 4, self.width // 4)
        return self.decoder(z)

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def forward(self, x):
        mu, logvar = self.encode(x)
        z = self.reparameterize(mu, logvar)
        recon = self.decode(z)
        return recon, mu, logvar

# 定义 TemporalAttention 模块
class TemporalAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.attention = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True)

    def forward(self, video_frames):
        b, t, c, h, w = video_frames.shape
        video_frames_flat = video_frames.view(b, t, -1)
        attn_output, _ = self.attention(video_frames_flat, video_frames_flat, video_frames_flat)
        enhanced_video_frames = attn_output.view(b, t, c, h, w)
        return enhanced_video_frames

# ========== 模型集成 ========== #

# 初始化各模块
text_encoder = TextEncoder(embed_dim=embed_dim)
dit_model = DiTForVideo(embed_dim=embed_dim, num_frames=num_frames, latent_dim=latent_dim)
vae = VAE3D(latent_dim=latent_dim, channels=channels, num_frames=num_frames, height=height, width=width)
temporal_attention = TemporalAttention(embed_dim=channels * height * width, num_heads=num_heads)

# ========== 前向传播过程 ========== #

# 生成随机的伪文本嵌入
text_embeddings = torch.randn(batch_size, embed_dim)

# 1. 文本编码
encoded_text = text_encoder(text_embeddings)

# 2. DiT 生成潜在视频帧表示
latent_video = dit_model(encoded_text)

# 3. 通过 3D VAE 解码整个潜在视频序列
latent_video = latent_video.unsqueeze(2).unsqueeze(3)  # 添加空间维度以适配 3D VAE
decoded_video = vae.decode(latent_video)

# 4. 通过 TemporalAttention 增强帧序列的连贯性
enhanced_video_frames = temporal_attention(decoded_video)

# 打印输出形状进行验证
print("解码后视频帧形状:", decoded_video.shape)
print("增强后视频帧形状:", enhanced_video_frames.shape)

输出示例

通过执行上述代码,我们可以得到如下输出,表示生成的多帧视频已经成功通过 3D VAE 解码,并且通过时序注意力机制进行了时序增强:

解码后视频帧形状: torch.Size([4, 8, 3, 64, 64])
增强后视频帧形状: torch.Size([4, 8, 3, 64, 64])

总结

本文介绍了一种基于 DiT3D VAE 的文生视频架构。通过 3D VAE 的时空卷积操作,我们能够直接处理多帧视频的潜在表示,生成连贯的帧序列。同时,Temporal Attention 自注意力机制进一步增强了视频帧之间的连贯性。该架构为文生视频任务提供了强大的生成能力,适用于生成长时间序列的视频。

希望这篇文章对你有所帮助!如有任何疑问,欢迎留言讨论!