# -*- coding: UTF-8 -*-
# 丘德诺夫斯基法計算高精度圓周率程序
# Calculating PI with Chudnovsky-Series
# Author: Idealguy,2018, Shanghai
#
import time
# In following functions, High-Prec Nums are both amplified 10**n
# pre-defined: Base=10**n
#
def Sqrt10005(): # Sqrt(10005L) by Imitate-Manual Method
n1=0
c=10002499687 #100.02499687
mc=8; m=mc
f1=10**mc
f2=f1*f1
a=10005*f2-c*c
while mc<n:
a*=f2
b=c*2*f1
d=a//b
c=c*f1+d
a-=d*(b+d)
mc+=m
if mc*2>n: m=n-mc
else: m=mc
f1=10**m
f2=f1*f1
n1+=1
return c
# Main Program
#
print ("Chudnovsky法計算高精度圓周率程序")
while 1:
n=int(input('計算位數[1..50000],0:退出:'))
if n<=10: break
n+=2
base=10**n
t=()
# Start Calculating
A=13591409*base; B=A
c3=13591409
i=1
while abs(A)>5:
c1=((108-72*i)*i-46)*i+5
c2=10939058860032000*i**3
c4=c3; c3+=545140134
i+=1
A=A*c1*c3//(c2*c4) # Must in form: A=A*...
B+=A
p=426880*base*Sqrt10005()//B//100
# Post access
print ("用時= %8.3f 秒" % (()-t))
s=input('是否显示结果(Y/N):')
if (s=='Y')|(s=="y"): print ("PI="+str(p))
# end