TensorFLow用Saver保存和恢复变量

时间:2021-10-15 03:55:24

本文为大家分享了TensorFLowSaver保存和恢复变量的具体代码,供大家参考,具体内容如下

建立文件tensor_save.py, 保存变量v1,v2的tensor到checkpoint files中,名称分别设置为v3,v4。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import tensorflow as tf
 
# Create some variables.
v1 = tf.Variable(3, name="v1")
v2 = tf.Variable(4, name="v2")
 
# Create model
y=tf.add(v1,v2)
 
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
 
# Add ops to save and restore all the variables.
saver = tf.train.Saver({'v3':v1,'v4':v2})
 
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
 sess.run(init_op)
 print("v1 = ", v1.eval())
 print("v2 = ", v2.eval())
 # Save the variables to disk.
 save_path = saver.save(sess, "f:/tmp/model.ckpt")
 print ("Model saved in file: ", save_path)

建立文件tensor_restror.py, 将checkpoint files中名称分别为v3,v4的tensor分别恢复到变量v3,v4中。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import tensorflow as tf
 
# Create some variables.
v3 = tf.Variable(0, name="v3")
v4 = tf.Variable(0, name="v4")
 
# Create model
y=tf.mul(v3,v4)
 
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
 
# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
 # Restore variables from disk.
 saver.restore(sess, "f:/tmp/model.ckpt")
 print ("Model restored.")
 print ("v3 = ", v3.eval())
 print ("v4 = ", v4.eval())
 print ("y = ",sess.run(y))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:http://blog.csdn.net/muyiyushan/article/details/68486497