【信号频率估计】MVDR算法及MATLAB仿真-二、算法应用实例

时间:2024-07-19 07:10:53

2.1 信号的频率估计

仿真1:对目标信号的到达角进行估计
设一维均匀线阵的阵元数目为8,其间距为半波长,有3个目标信号的到达角分别为-30°,0°,20°,利用MVDR算法对该目标信号进行到达角估计,计算结果如下图所示。
在这里插入图片描述
读者可根据自己的需求,设置阵元数、目标信号个数及目标真实角度、信号的信噪比等条件进行实验。

2.2 MATLAB仿真代码

clc;
clear;
close all;

%% MVDR算法估计到达角
d_lambda = 0.5;         % 阵元间距与波长比
Rx_Num = 8;             % 接收天线阵元数

N = 1000;               % 采样快拍数
sigNum = 3;             % 信源数目
theta0 = [-30,0,20];     % 真实来波角度
snr = 10;               % 信噪比

S = randn(sigNum,N)+1j*randn(sigNum,N);     % 远场窄带信号
A = exp(1j*2*pi*d_lambda*sind(theta0).'*(0:Rx_Num-1)).';     % 导向矢量
X = A*S;                            % 接收信号
Y = awgn(X,snr,'measured');         % 添加噪声的接收信号

R = Y*Y'/N;         % 接收数据的协方差矩阵
R_ = inv(R);        % 协方差矩阵的逆矩阵

thetaScan = (-90:0.1:90);       % 扫描角度范围
As = exp(1j*2*pi*d_lambda*sind(thetaScan).'*(0:Rx_Num-1)).';

num = 0;
P = zeros(1,length(thetaScan));     % 谱峰函数初始化
for ii = thetaScan
    num = num+1;
    P(num) = 1/(As(:,num)'*R_*As(:,num));
end
P = 10*log10(abs(P)/max(abs(P)));   % 对谱峰函数进行归一化并取对数
figure;
plot(thetaScan,P,'b','LineWidth',1);xlabel('扫描角范围');ylabel('归一化幅度/dB');hold on
ylim = get(gca,'Ylim');
for jj = 1:sigNum
    % 画出真实波达角的值进行对比
    line([theta0(jj) theta0(jj)],[ylim(1) ylim(2)],'Color','r','LineStyle','--');
    hold on;
end
legend('MVDR估计值','真实值');