Java多线程性能调优-Lock同步锁优化方法

时间:2024-07-13 07:00:13

和synchronized的对比
在这里插入图片描述
Lock是一个接口,AQS(AbstractQueuedSynchronizer)是一个抽象类。Lock锁是基于Java实现的锁,Lock是一个接口类,常用的实现类有ReentrantLock、ReentrantReadWriteLock(RRW),它们都是依赖AbstractQueuedSynchronizer(AQS)类实现的。

AQS类结构中包含一个基于链表实现的等待队列(CLH队列),用于存储所有阻塞的线程,AQS中还有一个state变量,该变量对ReentrantLock来说表示加锁状态。

该队列的操作均通过CAS操作实现,我们可以通过一张图来看下整个获取锁的流程。简而言之,通过CAS竞争和队首节点去获得锁。
在这里插入图片描述
锁分离优化Lock同步锁,默认的ReentrantLock是独占锁,在大部分业务场景中,读业务操作要远远大于写业务操作。而在多线程编程中,读操作并不会修改共享资源的数据,如果多个线程仅仅是读取共享资源,那么这种情况下其实没有必要对资源进行加锁。如果使用互斥锁,反倒会影响业务的并发性能,那么在这种场景下,有没有什么办法可以优化下锁的实现方式呢?

1.读写锁ReentrantReadWriteLock

RRW也是继承AQS实现,内部维护了两个锁读锁和写锁,实现的关键是将AQS的同步变量state分为高16位和低16位,分别表示读写。

2.读写锁再优化之StampedLock

RRW被很好地应用在了读大于写的并发场景中,然而RRW在性能上还有可提升的空间。在读取很多、写入很少的情况下,RRW会使写入线程遭遇饥饿(Starvation)问题,也就是说写入线程会因迟迟无法竞争到锁而一直处于等待状态。

在JDK1.8中,Java提供了StampedLock类解决了这个问题。StampedLock不是基于AQS实现的,但实现的原理和AQS是一样的,都是基于队列和锁状态实现的。与RRW不一样的是,StampedLock控制锁有三种模式: 写、悲观读以及乐观读,并且StampedLock在获取锁时会返回一个票据stamp,获取的stamp除了在释放锁时需要校验,在乐观读模式下,stamp还会作为读取共享资源后的二次校验,后面我会讲解stamp的工作原理。

我们先通过一个官方的例子来了解下StampedLock是如何使用的,代码如下:

public class Point {
    private double x, y;
    private final StampedLock s1 = new StampedLock();

    void move(double deltaX, double deltaY) {
        //获取写锁
        long stamp = s1.writeLock();
        try {
            x += deltaX;
            y += deltaY;
        } finally {
            //释放写锁
            s1.unlockWrite(stamp);
        }
    }

    double distanceFormOrigin() {
        //乐观读操作
        long stamp = s1.tryOptimisticRead();  
        //拷贝变量
        double currentX = x, currentY = y;
        //判断读期间是否有写操作
        if (!s1.validate(stamp)) {
            //升级为悲观读
            stamp = s1.readLock();
            try {
                currentX = x;
                currentY = y;
            } finally {
                s1.unlockRead(stamp);
            }
        }
        return Math.sqrt(currentX * currentX + currentY * currentY);
    }
}

我们可以发现:一个写线程获取写锁的过程中,首先是通过WriteLock获取一个票据stamp,WriteLock是一个独占锁,同时只有一个线程可以获取该锁,当一个线程获取该锁后,其它请求的线程必须等待,当没有线程持有读锁或者写锁的时候才可以获取到该锁。请求该锁成功后会返回一个stamp票据变量,用来表示该锁的版本,当释放该锁的时候,需要unlockWrite并传递参数stamp。

接下来就是一个读线程获取锁的过程。首先线程会通过乐观锁tryOptimisticRead操作获取票据stamp ,如果当前没有线程持有写锁,则返回一个非0的stamp版本信息。线程获取该stamp后,将会拷贝一份共享资源到方法栈,在这之前具体的操作都是基于方法栈的拷贝数据。

之后方法还需要调用validate,验证之前调用tryOptimisticRead返回的stamp在当前是否有其它线程持有了写锁,如果是,那么validate会返回0,升级为悲观锁;否则就可以使用该stamp版本的锁对数据进行操作。

相比于RRW,StampedLock获取读锁只是使用与或操作进行检验,不涉及CAS操作,即使第一次乐观锁获取失败,也会马上升级至悲观锁,这样就可以避免一直进行CAS操作带来的CPU占用性能的问题,因此StampedLock的效率更高。