如今,不断生成的数据量惊人,为企业提供了绝佳的机会,可以通过更深入地了解数据来改进决策。然而,大多数组织收集的数据超出了他们能够以有意义的方式分析和呈现的数据[19,28]。这导致行业 [40] 和学术界 [15] 对开发可用且可扩展的视觉分析 (VA) 解决方案越来越感兴趣并付出努力。 VA 通常被定义为:“交互式视觉界面促进分析推理的科学”[37,p.4]。无论简单还是复杂,VA系统本质上由两个主要组成部分组成:视觉表示和交互[39]。前者处理底层数据到替代视觉表示的映射,而后者则促进用户和 VA 系统之间的对话。尽管一直强调交互对于视觉数据分析的价值和重要性 [12,37],但正如其他人指出的那样,VA 社区的研究重点一直是数据的视觉表示而不是交互[2,24,30]。
图形感知被定义为用户解释视觉编码并从而理解图形中呈现的信息的能力[8]。上述更注重视觉表示而不是交互的趋势在时间序列可视化的图形感知中也占主导地位,这是视觉分析中经过充分研究的领域。时间序列可视化的定量图形感知研究的常见做法[4,10,14,16,21]是在静态环境中进行研究,即不允许用户与时间序列可视化进行交互,从而限制了我们的知识用户体验。此外,缺乏时间序列数据不同视觉表示的整体覆盖。之前的几项研究 [4,10,14,16,21] 比较了位置(例如,图 1(a&b))和颜色视觉编码(例如,图 1(c&d))类别内和之间时间序列可视化的有效性)。然而,据我们所知,还没有研究将使用区域视觉编码的时间序列可视化(例如图 1(e&f))与其位置和颜色对应物的有效性进行比较。尽管我们仅使用线段(或弧)长度(即宽度是固定的)对基于区域的可视化进行编码,但我们始终使用术语“区域”。面积确实由长度和宽度组成,但是由于线段/弧宽度相对较大,我们认为将我们的测试描述为面积刺激更为准确。与视觉编码类似,对于时间序列可视化的笛卡尔坐标系(例如图 1(a,c&e))和极坐标系(例如图 1(b,d&f))的优缺点,可用的经验证据有限,使用不同的视觉编码。
为了弥补这一研究差距,我们进行了一项全面的图形感知研究,测量了多个任务的不同交互、视觉编码和坐标系的时间序列可视化的有效性(即完成时间、准确性、置信度和易用性)。我们的工作做出了三个主要贡献:
C1:我们系统地研究了两种常用交互技术(即突出显示和工具提示)对不同时间序列可视化效果的影响。
C2:我们比较了使用三种不同视觉编码技术的时间序列可视化的有效性:位置、颜色和面积。
C3:我们研究了两个坐标系(笛卡尔坐标系和极坐标系)对上述每种视觉编码技术中时间序列可视化有效性的影响。
通过这些贡献,我们希望为一些依赖于大型时间序列数据集的有效数据可视化的非常实际的问题做出贡献,例如分析网络安全数据以应对网络威胁。我们还相信,我们的工作将激励视觉分析研究社区同样关注数据的交互和视觉表示。在下一节中,我们回顾相关工作。然后,我们介绍定量图形感知研究,并解释时间序列可视化、交互技术、研究任务和时间序列数据生成方法的选择。最后,我们展示结果,讨论其影响并强调进一步的研究机会。