ThreadPool是线程池,里面是一定数量的线程,是消费者。
BlockingQueue阻塞队列,线程池中的线程会从阻塞队列中去拿任务执行。任务多了线程池处理不过来了,就会到Blocking Queue中排队,等待执行。链表结构,特点是先进先出。java中Deque是一个双向链表,操作起来更方便。
main就是生产者,不断产生新的执行任务。
package com.xkj.thread.pool;
import java.util.ArrayDeque;
import java.util.Deque;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class BlockingQueue<T> {
//1.任务队列
private Deque<T> queue = new ArrayDeque<>();
//2.锁
private Lock lock = new ReentrantLock();
//3.生产者条件变量
private Condition fullWaitSet = lock.newCondition();
//4.消费者条件变量
private Condition emptyWaitSet = lock.newCondition();
//5.容量
private int capcity;
public BlockingQueue(int capcity) {
this.capcity = capcity;
}
/**
* 带超时的获取元素
* @param timeout
* @param unit
* @return
*/
public T poll(long timeout, TimeUnit unit) {
lock.lock();
try {
//将timeout统一转化成纳秒
long nanos = unit.toNanos(timeout);
while (queue.isEmpty()) { //判断队列是否为空
try {
if(nanos <= 0) {
return null;
}
//阻塞等待,当被唤醒后,队列不会空,不满足while条件,程序继续向下执行
//返回的是timeout - 已经等待的时间 = 剩余的时间
//防止虚假唤醒
nanos = emptyWaitSet.awaitNanos(nanos);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//获取队列头部的元素返回,获取元素后应该从队列中移除
T t = queue.removeFirst();
//唤醒生产者,继续添加元素
fullWaitSet.signal();
return t;
}finally {
lock.unlock();
}
}
/**
* 获取元素
* @return
*/
public T take() {
lock.lock();
try {
while (queue.isEmpty()) { //判断队列是否为空
try {
//阻塞等待,当被唤醒后,队列不会空,不满足while条件,程序继续向下执行
emptyWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//获取队列头部的元素返回,获取元素后应该从队列中移除
T t = queue.removeFirst();
//唤醒生产者,继续添加元素
fullWaitSet.signal();
return t;
}finally {
lock.unlock();
}
}
/**
* 添加元素
* @param element
*/
public void put(T element) {
lock.lock();
try {
while (queue.size() == capcity){
try {
fullWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.addLast(element);
//唤醒消费者,继续获取任务
emptyWaitSet.signal();
}finally {
lock.unlock();
}
}
/**
* 获取大小
* @return
*/
public int size() {
lock.lock();
try {
return queue.size();
}finally {
lock.unlock();
}
}
}
package com.xkj.thread.pool;
import lombok.extern.slf4j.Slf4j;
import java.util.HashSet;
import java.util.concurrent.TimeUnit;
@Slf4j(topic = "c.ThreadPool")
public class ThreadPool {
//任务队列
private BlockingQueue<Runnable> taskQueue;
//线程集合
private HashSet<Worker> workers = new HashSet<>();
//核心线程数
private int coreSize;
//获取任务的超时时间
private long timeout;
private TimeUnit timeUnit;
public ThreadPool(int coreSize, int queueCapcity,
long timeout, TimeUnit timeUnit) {
this.coreSize = coreSize;
this.timeout = timeout;
this.timeUnit = timeUnit;
this.taskQueue = new BlockingQueue<>(queueCapcity);
}
class Worker extends Thread {
private Runnable task;
public Worker(Runnable task) {
this.task = task;
}
@Override
public void run() {
// 执行任务
// 1.当task不为空执行任务
// 2.当task执行完毕,再接着从任务队列获取任务并执行
while(task != null || (task = taskQueue.take()) != null) {
try {
log.debug("正在执行...{}", task);
task.run();
}catch (Exception e) {
}finally {
task = null;
}
}
synchronized (workers) {
log.debug("worker 被移除{}", this);
workers.remove(this);
}
}
}
//执行任务
public void execute(Runnable task) {
synchronized (workers) {
if(workers.size() < coreSize) {
Worker worker = new Worker(task);
log.debug("新增worker{},{}", worker, task);
// 当任务数没有超过coreSize时,直接交给worker对象执行
workers.add(worker);
worker.start();
} else {
// 当任务数超过coreSize时,加入任务队列暂存
log.debug("加入任务队列{}", task);
taskQueue.put(task);
}
}
}
}
@Slf4j(topic = "c.TestPool")
public class TestPool {
public static void main(String[] args) {
ThreadPool threadPool = new ThreadPool(2, 10, 1000, TimeUnit.MILLISECONDS);
for (int i = 0; i < 5; i++) {
int j = i;
threadPool.execute(() -> {
log.debug("{}", j);
});
}
}
}
因为调用了BlockingQueue的take方法,当队列为空的时候,会无限循环等待,所以这两个线程一直没有结束。可以调用带超时的poll方法,超时后,线程就会结束,也从线程集合中移除。