redis数据结构

时间:2024-06-03 07:14:09

redis数据结构

  • 我们都知道 Redis 提供了丰富的数据类型,常见的有五种:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)。随着 Redis 版本的更新,后面又支持了四种数据类型: BitMap(2.2 版新增)、HyperLogLog(2.8 版新增)、GEO(3.2 版新增)、Stream(5.0 版新增)

Redis 为什么那么快?

  • 基于内存操作。
  • 单线程模型,从而避开了多线程中上下文频繁切换的操作。
  • 使用多路I/O复用模型,非阻塞I/O。
  • 高效数据结构。

RedisObject

  • 从Redis的使用者的角度来看,⼀个Redis节点包含多个database(非cluster模式下默认是16个,cluster模式下只能是1个),而一个database维护了从key space到object space的映射关系。这个映射关系的key是string类型,⽽value可以是多种数据类型,比如:string, list, hash、set、sorted set等。我们可以看到,key的类型固定是string,而value可能的类型是多个。

  • 从Redis内部实现的⾓度来看,database内的这个映射关系是用⼀个dict来维护的。dict的key固定用⼀种数据结构来表达就够了,这就是动态字符串sds。而value则比较复杂,为了在同⼀个dict内能够存储不同类型的value,这就需要⼀个通⽤的数据结构,这个通用的数据结构就是robj,全名是redisObject。

#define OBJ_STRING 0
#define OBJ_LIST 1
#define OBJ_SET 2
#define OBJ_ZSET 3
#define OBJ_HASH 4
typedef struct redisObject{
	unsigned type:4;	//对象类型,分别是string、hash、list、set和zset,占4bit位
    unsigned encoding:4;	//底层编码方式,共11种,占4bit
    unsigned lru:LRU_BITS;	//lru表示当前对象最后一次被访问时间,占24位
    int refcount;	//对象引用计数器
    void *ptr;	//指针指向对象实际位置
} robj;

redis编码方式

Redis中会根据存储的数据类型不同,选择不同的编码方式,共包含11种不同类型:

编号 编码方式 说明
0 OBJ_ENCODING_RAW raw编码动态字符串
1 OBJ_ENCODING_INT long类型的整数的字符串
2 OBJ_ENCODING_HT hash表(字典dict)
3 OBJ_ENCODING_ZIPMAP 已废弃
4 OBJ_ENCODING_LINKEDLIST 双端链表
5 OBJ_ENCODING_ZIPLIST 压缩列表
6 OBJ_ENCODING_INTSET 整数集合
7 OBJ_ENCODING_SKIPLIST 跳表
8 OBJ_ENCODING_EMBSTR embstr的动态字符串
9 OBJ_ENCODING_QUICKLIST 快速列表
10 OBJ_ENCODING_STREAM Stream流

五种数据结构

Redis中会根据存储的数据类型不同,选择不同的编码方式。每种数据类型的使用的编码方式如下:

数据类型 编码方式
OBJ_STRING int、embstr、raw
OBJ_LIST LinkedList和ZipList(3.2以前)、QuickList(3.2以后)
OBJ_SET intset、HT
OBJ_ZSET ZipList、HT、SkipList
OBJ_HASH ZipList、HT

SDS(动态字符串)

内部实现

struct __attribute__ ((__packed__)) hisdshdr8 {
    uint8_t len; 
    uint8_t alloc; 
    unsigned char flags; 
    char buf[];
};
  • len:占 4 个字节,表示 buf 的已用长度(额外开销)
  • alloc:占个 4 字节,表示 buf 的实际分配长度,一般大于 len(额外开销)
  • buf:字节数组,保存实际数据。为了表示字节数组的结束,Redis 会自动在数组最后加一个“\0”,这就会额外占用 1 个字节的开销(保存实际数据)
  • flags:用来表示不同类型的SDS。一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64,表示字符串长度和大小不超过25,28等

SDS优势

SDS和我们认识的c语言的字符不太一样,之所以没有使用c语言的字符串表示,因为SDS相比于C的原生字符串:

  • SDS 不仅可以保存文本数据,还可以保存二进制数据。因为 SDS 使用 len 属性的值而不是空字符来判断字符串是否结束,并且 SDS 的所有 API 都会以处理二进制的方式来处理 SDS 存放在 buf[] 数组里的数据。所以 SDS 不光能存放文本数据,而且能保存图片、音频、视频、压缩文件这样的二进制数据。
  • SDS 获取字符串长度的时间复杂度是 O(1)。因为 C 语言的字符串并不记录自身长度,所以获取长度的复杂度为 O(n);而 SDS 结构里用 len 属性记录了字符串长度,所以复杂度为 O(1)
  • Redis 的 SDS API 是安全的,拼接字符串不会造成缓冲区溢出。因为 SDS 在拼接字符串之前会检查 SDS 空间是否满足要求,如果空间不够会自动扩容,所以不会导致缓冲区溢出的问题。

SDS扩容机制

hisds hi_sdsMakeRoomFor(hisds s, size_t addlen)
{
    ... ...
    // s目前的剩余空间已足够,无需扩展,直接返回
    if (avail >= addlen)
        return s;
    //获取目前s的长度
    len = hi_sdslen(s);
    sh = (char *)s - hi_sdsHdrSize(oldtype);
    //扩展之后 s 至少需要的长度
    newlen = (len + addlen);
    //根据新长度,为s分配新空间所需要的大小
    if (newlen < HI_SDS_MAX_PREALLOC)
        //新长度<HI_SDS_MAX_PREALLOC 则分配所需空间*2的空间
        newlen *= 2;
    else
        //否则,分配长度为目前长度+1MB
        newlen += HI_SDS_MAX_PREALLOC;
       ...
}
如果所需的 sds 长度小于 1 MB,那么最后的扩容是按照翻倍扩容来执行的,即 2 倍的newlen
如果所需的 sds 长度超过 1 MB,那么最后的扩容长度应该是 newlen + 1MB。

编译优化

除了设计不同类型的结构体,Redis 在编程上还使用了专门的编译优化来节省内存空间,即在 struct 声明了 __attribute__ ((packed)) ,它的作用是:告诉编译器取消结构体在编译过程中的优化对齐,按照实际占用字节数进行对齐

链表

链表节点设计

//链表节点
typedef struct listNode {
    //前置节点
    struct listNode *prev;
    //后置节点
    struct listNode *next;
    //节点的值
    void *value;
} listNode;

链表结构设计

typedef struct list {
    //链表头节点
    listNode *head;
    //链表尾节点
    listNode *tail;	
    //节点值复制函数
    void *(*dup)(void *ptr);
    //节点值释放函数
    void (*free)(void *ptr);
    //节点值比较函数
    int (*match)(void *ptr, void *key);
    //链表节点数量
    unsigned long len;
} list;

链表的优势与缺陷

优点:

  • listNode链表节点的结构有prev和next指针,获取某个节点的前置或后置节点的时间复杂度只需O(1),而且这两个指针NULL,所以链表是无环链表.
  • list 结构因为提供了表头指针 head 和表尾节点 tail,所以获取链表的表头节点和表尾节点的时间复杂度只需O(1)
  • list 结构因为提供了链表节点数量 len,所以获取链表中的节点数量的时间复杂度只需O(1)
  • listNode 链表节使用 void* 指针保存节点值,并且可以通过 list 结构的 dup、free、match 函数指针为节点设置该节点类型特定的函数,因此链表节点可以保存各种不同类型的值

缺点:

  • 链表之间的内存都是不连续的,意味着无法很好利用cpu缓存,数组可以充分利用cpu缓存,因为cup缓存的是访问数据相邻的数据
  • 还有一点,保存一个链表节点的值都需要一个链表节点结构头的分配,内存开销较大

因此,Redis 3.0 的 List 对象在数据量比较少的情况下,会采用「压缩列表」作为底层数据结构的实现,它的优势是节省内存空间,并且是内存紧凑型的数据结构。

不过,压缩列表存在性能问题(具体什么问题,下面会说),所以 Redis 在 3.2 版本设计了新的数据结构 quicklist,并将 List 对象的底层数据结构改由 quicklist 实现。

然后在 Redis 5.0 设计了新的数据结构 listpack,沿用了压缩列表紧凑型的内存布局,最终在最新的 Redis 版本,将 Hash 对象和 Zset 对象的底层数据结构实现之一的压缩列表,替换成由 listpack 实现。

压缩列表(ZipList)

数据结构如下

image-20240524192555705

压缩列表的组成

  • zlbytes字段的类型是uint32_t, 这个字段中存储的是整个ziplist所占用的内存的字节数
  • zltail字段的类型是uint32_t, 它指的是ziplist中最后一个entry的偏移量. 用于快速定位最后一个entry, 以快速完成pop等操作
  • zllen字段的类型是uint16_t, 它指的是整个ziplit中entry的数量. 这个值只占2bytes(16位): 如果ziplist中entry的数目小于65535(2的16次方), 那么该字段中存储的就是实际entry的值. 若等于或超过65535, 那么该字段的值固定为65535, 但实际数量需要一个个entry的去遍历所有entry才能得到.
  • zlend是一个终止字节, 其值为全F, 即0xff. ziplist保证任何情况下, 一个entry的首字节都不会是255

压缩列表节点Entry包含三部分内容:

  • prevlen,记录了「前一个节点」的长度,目的是为了实现从后向前遍历;
  • encoding,记录了当前节点实际数据的「类型和长度」,类型主要有两种:字符串和整数;
  • data,记录了当前节点的实际数据,类型和长度都由 encoding 决定;

关于prevlen:

  • 如果前一个节点的长度小于 254 字节,那么 prevlen 属性需要用 1 字节的空间来保存这个长度值;
  • 如果前一个节点的长度大于等于 254 字节,那么 prevlen 属性需要用 5 字节的空间来保存这个长度值;

节点一般由两种情况:

  • 如果当前节点的数据是整数,则 encoding 会使用 1 字节的空间进行编码,也就是 encoding 长度为 1 字节。通过 encoding 确认了整数类型,就可以确认整数数据的实际大小了,比如如果 encoding 编码确认了数据是 int16 整数,那么 data 的长度就是 int16 的大小。
  • 如果当前节点的数据是字符串,根据字符串的长度大小,encoding 会使用 1 字节/2字节/5字节的空间进行编码,encoding 编码的前两个 bit 表示数据的类型,后续的其他 bit 标识字符串数据的实际长度,即 data 的长度。
为什么ZipList特别省内存
  • ziplist节省内存是相对于普通的list来说的,如果是普通的数组,那么它每个元素占用的内存是一样的且取决于最大的那个元素(很明显它是需要预留空间的)。
  • 所以ziplist在设计时就很容易想到要尽量让每个元素按照实际的内容大小存储,所以增加encoding字段,针对不同的encoding来细化存储大小。
  • 这时候还需要解决的一个问题是遍历元素时如何定位下一个元素呢?在普通数组中每个元素定长,所以不需要考虑这个问题;但是ziplist中每个data占据的内存不一样,所以为了解决遍历,需要增加记录上一个元素的length,所以增加了prelen字段
ziplist的缺点
  • ziplist也不预留内存空间, 并且在移除结点后, 也是立即缩容, 这代表每次写操作都会进行内存分配操作。
  • 结点如果扩容, 导致结点占用的内存增长, 并且超过254字节的话, 可能会导致链式反应,即连锁更新

快表

快表结构


typedef struct quicklist {
    //quicklist的链表头
    quicklistNode *head;      //quicklist的链表头
    //quicklist的链表尾
    quicklistNode *tail; 
    //所有压缩列表中的总元素个数
    unsigned long count;
    //quicklistNodes的个数
    unsigned long len;       
    ...
} quicklist;

typedef struct quicklistNode {
    //前一个quicklistNode
    struct quicklistNode *prev;     //前一个quicklistNode
    //下一个quicklistNode
    struct quicklistNode *next;     //后一个quicklistNode
    //quicklistNode指向的压缩列表
    unsigned char *zl;              
    //压缩列表的的字节大小
    unsigned int sz;                
    //压缩列表的元素个数
    unsigned int count : 16;        //ziplist中的元素个数 
    ....
} quicklistNode;
image.png

通过控制每个链表节点中的压缩列表的大小或者元素个数,来规避连锁更新的问题。因为压缩列表元素越少或越小,连锁更新带来的影响就越小,从而提供了更好的访问性能。

在向 quicklist 添加一个元素的时候,不会像普通的链表那样,直接新建一个链表节点。而是会检查插入位置的压缩列表是否能容纳该元素,如果能容纳就直接保存到 quicklistNode 结构里的压缩列表,如果不能容纳,才会新建一个新的 quicklistNode 结构。

quicklist 会控制 quicklistNode 结构里的压缩列表的大小或者元素个数,来规避潜在的连锁更新的风险,但是这仍没有完全解决连锁更新的问题。

哈希表

哈希表结构

typedef struct dictht{
    //哈希表数组
    dictEntry **table;
    //哈希表大小
    unsigned long size;
    //哈希表大小掩码,用于计算索引值
    //总是等于 size-1
    unsigned long sizemask;
    //该哈希表已有节点的数量
    unsigned long used;
}dictht

哈希表是由数组 table 组成,table 中每个元素都是指向 dict.h/dictEntry 结构,dictEntry 结构定义如下:

typedef struct dictEntry{
     //键
     void *key;
     //值
     union{
          void *val;
          uint64_tu64;
          int64_ts64;
     }v;
     //指向下一个哈希表节点,形成链表
     struct dictEntry *next;
}dictEntry
image-20240527173030325

哈希冲突(拉链法解决)

  • 扩容和收缩:当哈希表保存的键值对太多或者太少时,就要通过 rerehash(重新散列)来对哈希表进行相应的扩展或者收缩。具体步骤:
    • 如果执行扩展操作,会基于原哈希表创建一个大小等于 ht[0].used*2n 的哈希表(也就是每次扩展都是根据原哈希表已使用的空间扩大一倍创建另一个哈希表)。相反如果执行的是收缩操作,每次收缩是根据已使用空间缩小一倍创建一个新的哈希表。
    • 重新利用上面的哈希算法,计算索引值,然后将键值对放到新的哈希表位置上。
    • 所有键值对都迁徙完毕后,释放原哈希表的内存空间。
  • 触发扩容的条件
    • 负载因子 = 哈希表已保存节点数量 / 哈希表大小。
    • 服务器目前没有执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且负载因子大于等于1。
    • 服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且负载因子大于等于5。
  • 渐近式 rehash:什么叫渐进式 rehash?也就是说扩容和收缩操作不是一次性、集中式完成的,而是分多次、渐进式完成的。如果保存在Redis中的键值对只有几个几十个,那么 rehash 操作可以瞬间完成,但是如果键值对有几百万,几千万甚至几亿,那么要一次性的进行 rehash,势必会造成Redis一段时间内不能进行别的操作。所以Redis采用渐进式 rehash,这样在进行渐进式rehash期间,字典的删除查找更新等操作可能会在两个哈希表上进行,第一个哈希表没有找到,就会去第二个哈希表上进行查找。但是进行 增加操作,一定是在新的哈希表上进行的。

整数集合

typedef struct intset {
    uint32_t encoding;
    uint32_t length;
    int8_t contents[];
} intset;
  • encoding 表示编码方式,的取值有三个:INTSET_ENC_INT16, INTSET_ENC_INT32, INTSET_ENC_INT64
  • length 代表其中存储的整数的个数
  • contents 指向实际存储数值的连续内存区域, 就是一个数组;整数集合的每个元素都是 contents 数组的一个数组项(item),各个项在数组中按值得大小从小到大有序排序,且数组中不包含任何重复项。(虽然 intset 结构将 contents 属性声明为 int8_t 类型的数组,但实际上 contents 数组并不保存任何 int8_t 类型的值,contents 数组的真正类型取决于 encoding 属性的值)

整数集合的升级操作

当在一个int16类型的整数集合中插入一个int32类型的值,整个集合的所有元素都会转换成32类型。 整个过程有三步:

  • 根据新元素的类型(比如int32),扩展整数集合底层数组的空间大小,并为新元素分配空间。
  • 将底层数组现有的所有元素都转换成与新元素相同的类型, 并将类型转换后的元素放置到正确的位上, 而且在放置元素的过程中, 需要继续维持底层数组的有序性质不变。
  • 最后改变encoding的值,length+1。

那么如果我们删除掉刚加入的int32类型时,会不会做一个降级操作呢

不会。主要还是减少开销的权衡。

跳表

跳跃表结构在 Redis 中的运用场景只有一个,那就是作为有序列表 (Zset) 的使用。跳跃表的性能可以保证在查找,删除,添加等操作的时候在对数期望时间内完成,这个性能是可以和平衡树来相比较的,而且在实现方面比平衡树要优雅,这就是跳跃表的长处。跳跃表的缺点就是需要的存储空间比较大,属于利用空间来换取时间的数据结构。

跳表的结构设计

//跳表节点
typedef struct zskiplistNode {
    //Zset 对象的元素值
    sds ele;
    //元素权重值
    double score;
    //后向指针
    struct zskiplistNode *backward;
    //节点的level数组,保存每层上的前向指针和跨度
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned long span;
    } level[];
} zskiplistNode;
//跳表结构体
typedef struct zskiplist {
    struct zskiplistNode *header, *tail; //跳表的头尾节点,便于在O(1)时间复杂度内访问跳表的头节点和尾节点;
    unsigned long length; //跳表的长度,便于在O(1)时间复杂度获取跳表节点的数量;
    int level; //跳表的最大层数,便于在O(1)时间复杂度获取跳表中层高最大的那个节点的层数量;
} zskiplist;

跳表的结构:

image-20240527195942873

跳表的查找过程

image-20240527200556501

  • 先从头节点的最高层开始,找「元素:abc,权重:3」节点,这个节点的权重比要查找节点的小,所以要访问该层上的下一个节点;
  • 但是该层的下一个节点是空节点( leve[2]指向的是空节点),于是就会跳到「元素:abc,权重:3」节点的下一层去找,也就是 leve[1];
  • 「元素:abc,权重:3」节点的 leve[1] 的下一个指针指向了「元素:abcde,权重:4」的节点,然后将其和要查找的节点比较。虽然「元素:abcde,权重:4」的节点的权重和要查找的权重相同,但是当前节点的 SDS 类型数据「大于」要查找的数据,所以会继续跳到「元素:abc,权重:3」节点的下一层去找,也就是 leve[0];
  • 「元素:abc,权重:3」节点的 leve[0] 的下一个指针指向了「元素:abcd,权重:4」的节点,该节点正是要查找的节点,查询结束。

查找一个跳表节点的过程时,跳表会从头节点的最高层开始,逐一遍历每一层。在遍历某一层的跳表节点时,会用跳表节点中的 SDS 类型的元素和元素的权重来进行判断,共有两个判断条件:

  • 如果当前节点的权重「小于」要查找的权重时,跳表就会访问该层上的下一个节点。
  • 如果当前节点的权重「等于」要查找的权重时,并且当前节点的 SDS 类型数据「小于」要查找的数据时,跳表就会访问该层上的下一个节点。

如果上面两个条件都不满足,或者下一个节点为空时,跳表就会使用目前遍历到的节点的 level 数组里的下一层指针,然后沿着下一层指针继续查找,这就相当于跳到了下一层接着查找。

跳表节点层数设置

跳表的相邻两层的节点数量的比例会影响跳表的查询性能。

跳表的相邻两层的节点数量最理想的比例是 2:1,查找复杂度可以降低到 O(logN)

那怎样才能维持相邻两层的节点数量的比例为 2 : 1 呢?

跳表在创建节点的时候,随机生成每个节点的层数,并没有严格维持相邻两层的节点数量比例为 2 : 1 的情况。跳表在创建节点时候,会生成范围为[0-1]的一个随机数,如果这个随机数小于 0.25(相当于概率 25%),那么层数就增加 1 层,然后继续生成下一个随机数,直到随机数的结果大于 0.25 结束,最终确定该节点的层数。样的做法,相当于每增加一层的概率不超过 25%,层数越高,概率越低,层高最大限制是 32。(Redis 7.0 定义为 32,Redis 5.0 定义为 64,Redis 3.0 定义为 32。)