图像矩

时间:2024-06-02 16:54:11

图像矩

1.概述

图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(数据描述量)来描述整个图像,这组数据月简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰,图像识别技术的发展中,不断有新的描述图像特征提出,而图像不变矩就是其中一个。

从图像中计算出来的矩通常描述了图像不同种类的几何特征如:大小、灰度、方向、形状等,图像矩广泛应用于模式识别、目标分类、目标识别与防伪估计、图像编码与重构等领域。

严格来讲矩是概率与统计中的一个概念,是随机变量的一种数字特征。设 xx 为随机变量,C为常数,则量E[(x−c)^k]称为X关于C点的k阶矩。比较重要的两种情况如下:

1.c=0,这时a_k=E(X^k)称为X的k阶原点矩;

2.c=E(X),这时μ_k=E[(X−EX)^k]称为X的k阶中心矩

一阶原点矩就是期望,一阶中心矩μ_1=0,二阶中心矩μ_2就是X的方差Var(X)。在统计学上,高于4阶的矩极少使用,μ_3可以去衡量分布是否有偏,μ_4可以衡量分布(密度)在均值拘谨的陡峭程度。

针对一幅图像,我们把像素的坐标看成是一个二维随机变量(X, Y),那么一副灰度图可以用二维灰度图密度函数来表示,因此可以用矩来描述灰度图像的特征。
不变矩(Invariant Moments)是一种高度浓缩的图像特征,具有平移、灰度、尺度、旋转不变性,由M.K.Hu在1961年首先提出,1979年M.R.Teague根据正交多项式理论提出了Zernike矩

opencv中提供的API用来计算中心矩和Hu矩,下面主要介绍Hu的原理。


2.原理

一幅M×N的数字图像f(i,j),其p+q阶几何矩m_pq和中心矩μ_pq为:
图像矩
图像矩
其中f(i,j)为图像在坐标点(i,j)处的灰度值。

若将m_00看做图像的灰度质量,则(i¯,j¯)为图像的质心坐标,那么难中心矩μ_pq反应的是图像灰度相对于其灰度质心的分布情况,可以用几何矩来表示中心矩0~3阶中心矩与几何矩的关系如下:
图像矩
为了消除图像比例变化带来的影响,定义规格化中心矩如下:
图像矩
利用二阶和三阶规格中心矩可以导出下面7个不变矩组(Φ1 Φ7),它们在图像平移、旋转和比例变化时保持不变:
图像矩


相关程序请查看:https://blog.****.net/z827997640/article/details/79841984