信号采集:使用合适的传感器对轴承振动信号进行采集。
预处理:最近,有研究者将 KAN 创新架构的理念扩展到卷积神经网络,将卷积的经典线性变换更改为每个像素中可学习的非线性激活函数,提出并开源 KAN 卷积(CKAN)
KAN 卷积与卷积非常相似,但不是在内核和图像中相应像素之间应用点积,而是对每个元素应用可学习的非线性激活函数,然后将它们相加。KAN 卷积的内核相当于 4 个输入和 1 个输出神经元的 KAN 线性层。。
故障诊断:基于特征向量,采用适当的分类算法对轴承故障进行诊断。
研究内容