派生数学函数
下列是由固有数学函数派生的非固有数学函数:
函数 |
派生的等效公式 |
---|---|
Secant(正割) |
Sec(X) = 1 / Cos(X) |
Cosecant(余割) |
Cosec(X) = 1 / Sin(X) |
Cotangent(余切) |
Cotan(X) = 1 / Tan(X) |
Inverse Sine(反正弦) |
Arcsin(X) = Atn(X / Sqr(-X * X + 1)) |
Inverse Cosine(反余弦) |
Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) |
Inverse Secant(反正割) |
Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1)) |
Inverse Cosecant(反余割) |
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1)) |
Inverse Cotangent(反余切) |
Arccotan(X) = Atn(X) + 2 * Atn(1) |
Hyperbolic Sine(双曲正弦) |
HSin(X) = (Exp(X) - Exp(-X)) / 2 |
Hyperbolic Cosine(双曲余弦) |
HCos(X) = (Exp(X) + Exp(-X)) / 2 |
Hyperbolic Tangent(双曲正切) |
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) |
Hyperbolic Secant(双曲正割) |
HSec(X) = 2 / (Exp(X) + Exp(-X)) |
Hyperbolic Cosecant(双曲余割) |
HCosec(X) = 2 / (Exp(X) - Exp(-X)) |
Hyperbolic Cotangent(双曲余切) |
HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) |
Inverse Hyperbolic Sine(反双曲正弦) |
HArcsin(X) = Log(X + Sqr(X * X + 1)) |
Inverse Hyperbolic Cosine(反双曲余弦) |
HArccos(X) = Log(X + Sqr(X * X - 1)) |
Inverse Hyperbolic Tangent(反双曲正切) |
HArctan(X) = Log((1 + X) / (1 - X)) / 2 |
Inverse Hyperbolic Secant(反双曲正割) |
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) |
Inverse Hyperbolic Cosecant(反双曲余割) |
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X) |
Inverse Hyperbolic Cotangent(反双曲余切) |
HArccotan(X) = Log((X + 1) / (X - 1)) / 2 |
以 N 为底的对数 |
LogN(X) = Log(X) / Log(N) |