flow:
flow(self, X, y, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='png'):接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据
输入:trian文件夹下只有一个people文件夹:
输出:(注意个数和顺序)
-
x:样本数据,秩应为4.在黑白图像的情况下channel轴的值为1,在彩色图像情况下值为3
-
y:标签
-
batch_size:整数,默认32
-
shuffle:布尔值,是否随机打乱数据,默认为True
-
save_to_dir:None或字符串,该参数能让你将提升后的图片保存起来,用以可视化
-
save_prefix:字符串,保存提升后图片时使用的前缀, 仅当设置了
save_to_dir
时生效 -
save_format:"png"或"jpeg"之一,指定保存图片的数据格式,默认"jpeg"
-
yields:形如(x,y)的tuple,x是代表图像数据的numpy数组.y是代表标签的numpy数组.该迭代器无限循环.
-
seed: 整数,随机数种子
-
-
输出:
flow_from_directory :
flow_from_directory(directory): 以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据
- directory: 目标文件夹路径,对于每一个类,该文件夹都要包含一个子文件夹.子文件夹中任何JPG、PNG、BNP、PPM的图片都会被生成器使用.详情请查看此脚本
- target_size: 整数tuple,默认为(256, 256). 图像将被resize成该尺寸
- color_mode: 颜色模式,为"grayscale","rgb"之一,默认为"rgb".代表这些图片是否会被转换为单通道或三通道的图片.
- classes: 可选参数,为子文件夹的列表,如['dogs','cats']默认为None. 若未提供,则该类别列表将从
directory
下的子文件夹名称/结构自动推断。每一个子文件夹都会被认为是一个新的类。(类别的顺序将按照字母表顺序映射到标签值)。通过属性class_indices
可获得文件夹名与类的序号的对应字典。 - class_mode: "categorical", "binary", "sparse"或None之一. 默认为"categorical. 该参数决定了返回的标签数组的形式, "categorical"会返回2D的one-hot编码标签,"binary"返回1D的二值标签."sparse"返回1D的整数标签,如果为None则不返回任何标签, 生成器将仅仅生成batch数据, 这种情况在使用
model.predict_generator()
和model.evaluate_generator()
等函数时会用到. - batch_size: batch数据的大小,默认32
- shuffle: 是否打乱数据,默认为True
- seed: 可选参数,打乱数据和进行变换时的随机数种子
- save_to_dir: None或字符串,该参数能让你将提升后的图片保存起来,用以可视化
- save_prefix:字符串,保存提升后图片时使用的前缀, 仅当设置了
save_to_dir
时生效 - save_format:"png"或"jpeg"之一,指定保存图片的数据格式,默认"jpeg"
- flollow_links: 是否访问子文件夹中的软链接
-
-
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
-
import numpy as np
-
datagen = ImageDataGenerator(
-
rotation_range=40,
-
width_shift_range=0.2,
-
height_shift_range=0.2,
-
shear_range=0.2,
-
zoom_range=0.2,
-
horizontal_flip=True,
-
fill_mode='nearest')
-
gener=datagen.flow_from_directory(r'E:\C3D_Data\trian',#类别子文件夹的上一级文件夹
-
batch_size=2,
-
shuffle=False,
-
save_to_dir=r'E:\C3D_Data\train_result',
-
save_prefix='trans_',
-
save_format='jpg')
-
for i in range(3):
-
gener.next()