ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)

时间:2022-05-10 03:09:04

欧拉函数,用φ(n)表示

欧拉函数是求小于等于n的数中与n互质的数的数目

辣么,怎么求哩?~(~o ̄▽ ̄)~o

可以先在1到n-1中找到与n不互质的数,然后把他们减掉

比如φ(12)

把12质因数分解,12=2*2*3,其实就是得到了2和3两个质因数

然后把2的倍数和3的倍数都删掉

2的倍数:2,4,6,8,10,12

3的倍数:3,6,9,12

本来想直接用12 - 12/2 - 12/3

但是6和12重复减了

所以还要把即是2的倍数又是3的倍数的数加回来 (>﹏<)

所以这样写12 - 12/2 - 12/3 + 12/(2*3)

这叫什么,这叫容斥啊,容斥定理听过吧

比如φ(30),30 = 2*3*5

所以φ(30) = 30 - 30/2 - 30/3 - 30/5 + 30/(2*3) + 30/(2*5) + 30/(3*5) - 30/(2*3*5)

但是容斥写起来好麻烦( ̄. ̄)

有一种简单的方法

φ(12)   =   12*(1 - 1/2)*(1 - 1/3)                 =   12*(1 - 1/2 - 1/3 + 1/6)

φ(30)   =   30*(1 - 1/2)*(1 - 1/3)*(1 - 1/5)   =   30*(1 - 1/2 - 1/3 - 1/5 + 1/6 + 1/10 + 1/15 - 1/30)

你看( •̀∀•́ ),拆开后发现它帮你自动帮你容斥好

所以φ(30)的计算方法就是先找30的质因数

分别是2,3,5

然后用30* 1/2 * 2/3 * 4/5就搞定了

顺便一提,phi(1) = 1

代码如下:

 //欧拉函数
int phi(int x){
int ans = x;
for(int i = ; i*i <= x; i++){
if(x % i == ){
ans = ans / i * (i-);
while(x % i == ) x /= i;
}
}
if(x > ) ans = ans / x * (x-);
return ans;
}

(phi就是φ的读音)

机智的代码,机智的我(。・`ω´・)

这个的复杂度是O(√n),如果要你求n个数的欧拉函数,复杂度是O(n√n),这也太慢了

有更快的方法

跟埃筛素数差不多

 #include<cstdio>
const int N = + ;
int phi[N];
void Euler(){
phi[] = ;
for(int i = ; i < N; i ++){
if(!phi[i]){
for(int j = i; j < N; j += i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-);
}
}
}
}
int main(){
Euler();
}

(Euler就是欧拉)

另一种,比上面更快的方法

需要用到如下性质

p为质数

1. phi(p)=p-1   因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质

2. 如果i mod p = 0, 那么 phi(i * p)=phi(i) * p         (我不会证明)

3.若i mod p ≠0,  那么 phi( i * p )=phi(i) * ( p-1 )   (我不会证明)

(所以我说我会证明都是骗人的╮( ̄▽ ̄)╭)

代码如下:

 #include<cstdio>
using namespace std;
const int N = 1e6+ ;
int phi[N], prime[N];
int tot;//tot计数,表示prime[N]中有多少质数
void Euler(){
phi[] = ;
for(int i = ; i < N; i ++){
if(!phi[i]){
phi[i] = i-;
prime[tot ++] = i;
}
for(int j = ; j < tot && 1ll*i*prime[j] < N; j ++){
if(i % prime[j]) phi[i * prime[j]] = phi[i] * (prime[j]-);
else{
phi[i * prime[j] ] = phi[i] * prime[j];
break;
}
}
}
} int main(){
Euler();
}

最后说下

a^b % p  不等价  (a%p)^(b%p) % p

因为

a^φ(p) ≡ 1 (mod p)

所以

a^b % p  =  (a%p)^(b%φ(p)) % p

(欧拉函数前提是a和p互质)

ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)

如果p是质数

直接用这个公式

ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)

机智的代码,机智的我(。・`ω´・)

///////////////////////////////////////////////

2016年7月23号

我的天哪,我又发现了一个新公式,貌似可以摆脱a和p互质的束缚,让我们来命名为:超欧拉取模进化公式

ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)

这是历史性的一刻,妈妈再也不用为a和p不互质而担心了= =

 

ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)的更多相关文章

  1. (数论)51NOD 1136 欧拉函数

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  2. hdu2824 The Euler function(欧拉函数个数)

    版权声明:本文为博主原创文章,未经博主同意不得转载. vasttian https://blog.csdn.net/u012860063/article/details/36426357 题目链接:h ...

  3. 【BZOJ2818】Gcd (欧拉函数)

    网址:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 一道数论裸题,欧拉函数前缀和搞一下就行了. 小于n的gcd为p的无序数对,就是phi(1 ...

  4. poj2409 &amp&semi; 2154 polya计数&plus;欧拉函数优化

    这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...

  5. POJ 2407:Relatives(欧拉函数模板)

    Relatives AC代码 Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16186   Accept ...

  6. BZOJ 4802 欧拉函数(Pollard&lowbar;Rho)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4802 [题目大意] 已知N,求phi(N),N<=10^18 [题解] 我们用P ...

  7. poj1284(欧拉函数&plus;原根)

    题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p ...

  8. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  9. hdu 1286&colon;找新朋友(数论,欧拉函数)

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. bootstrap表格多样式及代码

    <!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...

  2. java&comma;图片压缩&comma;略缩图

    在网上找了两个图片的缩放类,在这里分享一下: package manager.util; import java.util.Calendar; import java.io.File; import ...

  3. 关于NetBeans IDE的配置优化

    首先,IDE的版本最好对应着JDK的版本. NetBeans优化的目的是提高NetBeans的启动速度和运行速度.下面介绍的NetBeans优化技巧是在版本6.0beta2上的优化.经过实验,大大提高 ...

  4. can&&num;39&semi;t find which disk is full

    df -lh lsof | grep delete $program_id df -lh # 搞定问题

  5. --&commat;angularJS--浅谈class与Ng-Class的应用

    1.angularjs的表达式是可以写在class里面动态改变其值的,写法如下: □.CSS1.html: <!doctype html><html ng-app="MyC ...

  6. c&num; 基础算法&lpar;一&rpar; 九九乘法

    闲来无事,偶见某贴子里面讨论面试题.突然对一题产生了兴趣,做一道99乘法打印(主要是我工作了2家单位,还没有一家单位在面试时给我出这一道题)于是试着自己写写看.大概逻辑如下 class program ...

  7. springboot2&period;x版本整合redis&lpar;单机&sol;集群&rpar;&lpar;使用lettuce&rpar;

    在springboot1.x系列中,其中使用的是jedis,但是到了springboot2.x其中使用的是Lettuce. 此处springboot2.x,所以使用的是Lettuce.关于jedis跟 ...

  8. 运行gulp项目报错:AssertionError&colon; Task function must be specified。

    一.问题描述: gulp项目在本地windows 10机器上跑没有任何问题,但是放在centos 7虚拟机上跑报错:AssertionError: Task function must be spec ...

  9. 通过GCEASY 和 jfr 发现运行时问题

    进入 /dev/shm  目录 ,gc-xxx-xx  的gc 文件 ,上次 gceasy  进行分析 另外 ,通过打开 飞行记录器  , 打开jmc  通过jmx  端口连接上去 ,并启用飞行记录器 ...

  10. iOS用户体验之-导航之道

    iOS用户体验之-导航之道 用户不会意识到有导航指向的存在除非他遇到非预期的效果. 能够说导航时逻辑跳转的节点.所以导航对用户体验是至关重要的. iOS中有三种类型的导航.每一种适合不同类型的app. ...