每日OJ题_记忆化搜索②_力扣62. 不同路径(三种解法)

时间:2024-05-11 09:18:44

目录

力扣62. 不同路径

解析代码1_暴搜递归(超时)

解析代码2_记忆化搜索

解析代码3_动态规划


力扣62. 不同路径

62. 不同路径

难度 中等

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9
class Solution {
public:
    int uniquePaths(int m, int n) {

    }
};

解析代码1_暴搜递归(超时)

  • 递归含义:给 dfs 一个下标,返回从 [0, 0] 位置走到 [i, j] 位置一共有多少种方法。
  • 函数体:只要知道到达上面位置的方法数以及到达左边位置的方法数,然后累加起来即可。
  • 递归出口:当下标越界的时候返回 0 ,当位于起点的时候,返回 1 。
class Solution {
public:
    int uniquePaths(int m, int n) {
        return dfs(m, n);
    }

    int dfs(int sr, int sc)
    {
        if(sr == 0 || sc == 0)
            return 0;
        if(sr == 1 && sc == 1)
            return 1;
        return dfs(sr - 1, sc) + dfs(sr, sc - 1);
    }
};


解析代码2_记忆化搜索

记忆化搜索解法:

  • 加上一个备忘录。
  • 每次进入递归的时候,去备忘录里面看看。
  • 每次返回的时候,将结果加入到备忘录里面。
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> memo(m + 1, vector<int>(n + 1));
        return dfs(m, n, memo);
    }

    int dfs(int sr, int sc, vector<vector<int>>& memo)
    {
        if(sr == 0 || sc == 0)
            return 0;
        if(sr == 1 && sc == 1)
            return 1;

        if(memo[sr][sc] != 0)
            return memo[sr][sc];
        
        memo[sr][sc] = dfs(sr - 1, sc, memo) + dfs(sr, sc - 1, memo);
        return memo[sr][sc];
    }
};


解析代码3_动态规划

根据记忆化搜索得出动态规划的解法:

  • 递归含义:状态表示
  • 函数体:状态转移方程
  • 递归出口:初始化
  • 填表顺序:填备忘录的顺序
  • 返回值:备忘录的值
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        dp[1][1] = 1;
        for(int i = 1; i <= m; ++i)
        {
            for(int j = 1; j <= n; ++j)
            {
                if(i == 1 && j == 1)
                    continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m][n];
    }
};