yield的功能类似于return,但是不同之处在于它返回的是生成器。
生成器
生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭代器不一定是生成器)。
如果一个函数包含yield关键字,这个函数就会变为一个生成器。
生成器并不会一次返回所有结果,而是每次遇到yield关键字后返回相应结果,并保留函数当前的运行状态,等待下一次的调用。
由于生成器也是一个迭代器,那么它就应该支持next方法来获取下一个值。
基本操作
1
2
3
4
|
# 通过`yield`来创建生成器
def func():
for i in xrange ( 10 );
yield i
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
# 通过列表来创建生成器
[i for i in xrange ( 10 )]
# 通过`yield`来创建生成器
def func():
for i in xrange ( 10 );
yield i
# 通过列表来创建生成器
[i for i in xrange ( 10 )]
# 调用如下
>>> f = func()
>>> f # 此时生成器还没有运行
<generator object func at 0x7fe01a853820 >
>>> f. next () # 当i=0时,遇到yield关键字,直接返回
>>> f. next () # 继续上一次执行的位置,进入下一层循环
...
>>> f. next ()
>>> f. next () # 当执行完最后一次循环后,结束yield语句,生成StopIteration异常
Traceback (most recent call last):
File "<stdin>" , line 1 , in <module>
StopIteration
>>>
# 调用如下
>>> f = func()
>>> f # 此时生成器还没有运行
<generator object func at 0x7fe01a853820 >
>>> f. next () # 当i=0时,遇到yield关键字,直接返回
>>> f. next () # 继续上一次执行的位置,进入下一层循环
...
>>> f. next ()
>>> f. next () # 当执行完最后一次循环后,结束yield语句,生成StopIteration异常
Traceback (most recent call last):
File "<stdin>" , line 1 , in <module>
StopIteration
>>>
|
除了next函数,生成器还支持send函数。该函数可以向生成器传递参数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
>>> def func():
... n = 0
... while 1 :
... n = yield n #可以通过send函数向n赋值
...
>>> f = func()
>>> f. next () # 默认情况下n为0
>>> f.send( 1 ) #n赋值1
>>> f.send( 2 )
>>>
>>> def func():
... n = 0
... while 1 :
... n = yield n #可以通过send函数向n赋值
...
>>> f = func()
>>> f. next () # 默认情况下n为0
>>> f.send( 1 ) #n赋值1
>>> f.send( 2 )
>>>
|
应用
最经典的例子,生成无限序列。
常规的解决方法是,生成一个满足要求的很大的列表,这个列表需要保存在内存中,很明显内存限制了这个问题。
1
2
3
4
5
6
7
8
|
def get_primes(start):
for element in magical_infinite_range(start):
if is_prime(element):
return element
def get_primes(start):
for element in magical_infinite_range(start):
if is_prime(element):
return element
|
如果使用生成器就不需要返回整个列表,每次都只是返回一个数据,避免了内存的限制问题。
1
2
3
4
5
6
7
8
9
10
|
def get_primes(number):
while True :
if is_prime(number):
yield number
number + = 1
def get_primes(number):
while True :
if is_prime(number):
yield number
number + = 1
|
生成器源码分析
生成器的源码在Objects/genobject.c。
调用栈
在解释生成器之前,需要讲解一下Python虚拟机的调用原理。
Python虚拟机有一个栈帧的调用栈,其中栈帧的是PyFrameObject,位于Include/frameobject.h。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
typedef struct _frame {
PyObject_VAR_HEAD
struct _frame * f_back; / * previous frame, or NULL * /
PyCodeObject * f_code; / * code segment * /
PyObject * f_builtins; / * builtin symbol table (PyDictObject) * /
PyObject * f_globals; / * global symbol table (PyDictObject) * /
PyObject * f_locals; / * local symbol table ( any mapping) * /
PyObject * * f_valuestack; / * points after the last local * /
/ * Next free slot in f_valuestack. Frame creation sets to f_valuestack.
Frame evaluation usually NULLs it, but a frame that yields sets it
to the current stack top. * /
PyObject * * f_stacktop;
PyObject * f_trace; / * Trace function * /
/ * If an exception is raised in this frame, the next three are used to
* record the exception info ( if any ) originally in the thread state. See
* comments before set_exc_info() - - it's not obvious.
* Invariant: if _type is NULL, then so are _value and _traceback.
* Desired invariant: all three are NULL, or all three are non - NULL. That
* one isn't currently true, but "should be" .
* /
PyObject * f_exc_type, * f_exc_value, * f_exc_traceback;
PyThreadState * f_tstate;
int f_lasti; / * Last instruction if called * /
/ * Call PyFrame_GetLineNumber() instead of reading this field
directly. As of 2.3 f_lineno is only valid when tracing is
active (i.e. when f_trace is set ). At other times we use
PyCode_Addr2Line to calculate the line from the current
bytecode index. * /
int f_lineno; / * Current line number * /
int f_iblock; / * index in f_blockstack * /
PyTryBlock f_blockstack[CO_MAXBLOCKS]; / * for try and loop blocks * /
PyObject * f_localsplus[ 1 ]; / * locals + stack, dynamically sized * /
} PyFrameObject;
typedef struct _frame {
PyObject_VAR_HEAD
struct _frame * f_back; / * previous frame, or NULL * /
PyCodeObject * f_code; / * code segment * /
PyObject * f_builtins; / * builtin symbol table (PyDictObject) * /
PyObject * f_globals; / * global symbol table (PyDictObject) * /
PyObject * f_locals; / * local symbol table ( any mapping) * /
PyObject * * f_valuestack; / * points after the last local * /
/ * Next free slot in f_valuestack. Frame creation sets to f_valuestack.
Frame evaluation usually NULLs it, but a frame that yields sets it
to the current stack top. * /
PyObject * * f_stacktop;
PyObject * f_trace; / * Trace function * /
/ * If an exception is raised in this frame, the next three are used to
* record the exception info ( if any ) originally in the thread state. See
* comments before set_exc_info() - - it's not obvious.
* Invariant: if _type is NULL, then so are _value and _traceback.
* Desired invariant: all three are NULL, or all three are non - NULL. That
* one isn't currently true, but "should be" .
* /
PyObject * f_exc_type, * f_exc_value, * f_exc_traceback;
PyThreadState * f_tstate;
int f_lasti; / * Last instruction if called * /
/ * Call PyFrame_GetLineNumber() instead of reading this field
directly. As of 2.3 f_lineno is only valid when tracing is
active (i.e. when f_trace is set ). At other times we use
PyCode_Addr2Line to calculate the line from the current
bytecode index. * /
int f_lineno; / * Current line number * /
int f_iblock; / * index in f_blockstack * /
PyTryBlock f_blockstack[CO_MAXBLOCKS]; / * for try and loop blocks * /
PyObject * f_localsplus[ 1 ]; / * locals + stack, dynamically sized * /
} PyFrameObject;
|
栈帧保存了给出代码的的信息和上下文,其中包含最后执行的指令,全局和局部命名空间,异常状态等信息。f_valueblock保存了数据,b_blockstack保存了异常和循环控制方法。
举一个例子来说明,
1
2
3
4
5
6
7
8
|
def foo():
x = 1
def bar(y):
z = y + 2 #
def foo():
x = 1
def bar(y):
z = y + 2 #
|
那么,相应的调用栈如下,一个py文件,一个类,一个函数都是一个代码块,对应者一个Frame,保存着上下文环境以及字节码指令。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
c - - - - - - - - - - - - - - - - - - - - - - - - - - -
a | bar Frame | - > block stack: []
l | (newest) | - > data stack: [ 1 , 2 ]
l - - - - - - - - - - - - - - - - - - - - - - - - - - -
| foo Frame | - > block stack: []
s | | - > data stack: [.bar at 0x10d389680 >, 1 ]
t - - - - - - - - - - - - - - - - - - - - - - - - - - -
a | main (module) Frame | - > block stack: []
c | (oldest) | - > data stack: []
k - - - - - - - - - - - - - - - - - - - - - - - - - - -
c - - - - - - - - - - - - - - - - - - - - - - - - - - -
a | bar Frame | - > block stack: []
l | (newest) | - > data stack: [ 1 , 2 ]
l - - - - - - - - - - - - - - - - - - - - - - - - - - -
| foo Frame | - > block stack: []
s | | - > data stack: [.bar at 0x10d389680 >, 1 ]
t - - - - - - - - - - - - - - - - - - - - - - - - - - -
a | main (module) Frame | - > block stack: []
c | (oldest) | - > data stack: []
k - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
每一个栈帧都拥有自己的数据栈和block栈,独立的数据栈和block栈使得解释器可以中断和恢复栈帧(生成器正式利用这点)。
Python代码首先被编译为字节码,再由Python虚拟机来执行。一般来说,一条Python语句对应着多条字节码(由于每条字节码对应着一条C语句,而不是一个机器指令,所以不能按照字节码的数量来判断代码性能)。
调用dis模块可以分析字节码,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
from dis import dis
dis(foo)
0 LOAD_CONST 1 ( 1 ) # 加载常量1
3 STORE_FAST 0 (x) # x赋值为1
6 LOAD_CONST 2 (<code>) # 加载常量2
9 MAKE_FUNCTION 0 # 创建函数
12 STORE_FAST 1 (bar)
15 LOAD_FAST 1 (bar)
18 LOAD_FAST 0 (x)
21 CALL_FUNCTION 1 # 调用函数
24 RETURN_VALUE < / code>
from dis import dis
dis(foo)
0 LOAD_CONST 1 ( 1 ) # 加载常量1
3 STORE_FAST 0 (x) # x赋值为1
6 LOAD_CONST 2 (<code>) # 加载常量2
9 MAKE_FUNCTION 0 # 创建函数
12 STORE_FAST 1 (bar)
15 LOAD_FAST 1 (bar)
18 LOAD_FAST 0 (x)
21 CALL_FUNCTION 1 # 调用函数
24 RETURN_VALUE < / code>
|
其中,
第一行为代码行号;
第二行为偏移地址;
第三行为字节码指令;
第四行为指令参数;
第五行为参数解释。
第一行为代码行号;
第二行为偏移地址;
第三行为字节码指令;
第四行为指令参数;
第五行为参数解释。
生成器源码分析
由了上面对于调用栈的理解,就可以很容易的明白生成器的具体实现。
生成器的源码位于object/genobject.c。
生成器的创建
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
PyObject *
PyGen_New(PyFrameObject * f)
{
PyGenObject * gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 创建生成器对象
if (gen = = NULL) {
Py_DECREF(f);
return NULL;
}
gen - >gi_frame = f; # 赋予代码块
Py_INCREF(f - >f_code); # 引用计数+1
gen - >gi_code = (PyObject * )(f - >f_code);
gen - >gi_running = 0 ; # 0表示为执行,也就是生成器的初始状态
gen - >gi_weakreflist = NULL;
_PyObject_GC_TRACK(gen); # GC跟踪
return (PyObject * )gen;
}
PyObject *
PyGen_New(PyFrameObject * f)
{
PyGenObject * gen = PyObject_GC_New(PyGenObject, &PyGen_Type); # 创建生成器对象
if (gen = = NULL) {
Py_DECREF(f);
return NULL;
}
gen - >gi_frame = f; # 赋予代码块
Py_INCREF(f - >f_code); # 引用计数+1
gen - >gi_code = (PyObject * )(f - >f_code);
gen - >gi_running = 0 ; # 0表示为执行,也就是生成器的初始状态
gen - >gi_weakreflist = NULL;
_PyObject_GC_TRACK(gen); # GC跟踪
return (PyObject * )gen;
}
|
send与next
next与send函数,如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
static PyObject *
gen_iternext(PyGenObject * gen)
{
return gen_send_ex(gen, NULL, 0 );
}
static PyObject *
gen_send(PyGenObject * gen, PyObject * arg)
{
return gen_send_ex(gen, arg, 0 );
}
static PyObject *
gen_iternext(PyGenObject * gen)
{
return gen_send_ex(gen, NULL, 0 );
}
static PyObject *
gen_send(PyGenObject * gen, PyObject * arg)
{
return gen_send_ex(gen, arg, 0 );
}
|
从上面的代码中可以看到,send和next都是调用的同一函数gen_send_ex,区别在于是否带有参数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
static PyObject *
gen_send_ex(PyGenObject * gen, PyObject * arg, int exc)
{
PyThreadState * tstate = PyThreadState_GET();
PyFrameObject * f = gen - >gi_frame;
PyObject * result;
if (gen - >gi_running) { # 判断生成器是否已经运行
PyErr_SetString(PyExc_ValueError,
"generator already executing" );
return NULL;
}
if (f = = NULL || f - >f_stacktop = = NULL) { # 如果代码块为空或调用栈为空,则抛出StopIteration异常
/ * Only set exception if called from send() * /
if (arg && !exc)
PyErr_SetNone(PyExc_StopIteration);
return NULL;
}
if (f - >f_lasti = = - 1 ) { # f_lasti=1 代表首次执行
if (arg && arg ! = Py_None) { # 首次执行不允许带有参数
PyErr_SetString(PyExc_TypeError,
"can't send non-None value to a "
"just-started generator" );
return NULL;
}
} else {
/ * Push arg onto the frame's value stack * /
result = arg ? arg : Py_None;
Py_INCREF(result); # 该参数引用计数+1
* (f - >f_stacktop + + ) = result; # 参数压栈
}
/ * Generators always return to their most recent caller, not
* necessarily their creator. * /
f - >f_tstate = tstate;
Py_XINCREF(tstate - >frame);
assert (f - >f_back = = NULL);
f - >f_back = tstate - >frame;
gen - >gi_running = 1 ; # 修改生成器执行状态
result = PyEval_EvalFrameEx(f, exc); # 执行字节码
gen - >gi_running = 0 ; # 恢复为未执行状态
/ * Don't keep the reference to f_back any longer than necessary. It
* may keep a chain of frames alive or it could create a reference
* cycle. * /
assert (f - >f_back = = tstate - >frame);
Py_CLEAR(f - >f_back);
/ * Clear the borrowed reference to the thread state * /
f - >f_tstate = NULL;
/ * If the generator just returned (as opposed to yielding), signal
* that the generator is exhausted. * /
if (result = = Py_None && f - >f_stacktop = = NULL) {
Py_DECREF(result);
result = NULL;
/ * Set exception if not called by gen_iternext() * /
if (arg)
PyErr_SetNone(PyExc_StopIteration);
}
if (!result || f - >f_stacktop = = NULL) {
/ * generator can't be rerun, so release the frame * /
Py_DECREF(f);
gen - >gi_frame = NULL;
}
return result;
}
static PyObject *
gen_send_ex(PyGenObject * gen, PyObject * arg, int exc)
{
PyThreadState * tstate = PyThreadState_GET();
PyFrameObject * f = gen - >gi_frame;
PyObject * result;
if (gen - >gi_running) { # 判断生成器是否已经运行
PyErr_SetString(PyExc_ValueError,
"generator already executing" );
return NULL;
}
if (f = = NULL || f - >f_stacktop = = NULL) { # 如果代码块为空或调用栈为空,则抛出StopIteration异常
/ * Only set exception if called from send() * /
if (arg && !exc)
PyErr_SetNone(PyExc_StopIteration);
return NULL;
}
if (f - >f_lasti = = - 1 ) { # f_lasti=1 代表首次执行
if (arg && arg ! = Py_None) { # 首次执行不允许带有参数
PyErr_SetString(PyExc_TypeError,
"can't send non-None value to a "
"just-started generator" );
return NULL;
}
} else {
/ * Push arg onto the frame's value stack * /
result = arg ? arg : Py_None;
Py_INCREF(result); # 该参数引用计数+1
* (f - >f_stacktop + + ) = result; # 参数压栈
}
/ * Generators always return to their most recent caller, not
* necessarily their creator. * /
f - >f_tstate = tstate;
Py_XINCREF(tstate - >frame);
assert (f - >f_back = = NULL);
f - >f_back = tstate - >frame;
gen - >gi_running = 1 ; # 修改生成器执行状态
result = PyEval_EvalFrameEx(f, exc); # 执行字节码
gen - >gi_running = 0 ; # 恢复为未执行状态
/ * Don't keep the reference to f_back any longer than necessary. It
* may keep a chain of frames alive or it could create a reference
* cycle. * /
assert (f - >f_back = = tstate - >frame);
Py_CLEAR(f - >f_back);
/ * Clear the borrowed reference to the thread state * /
f - >f_tstate = NULL;
/ * If the generator just returned (as opposed to yielding), signal
* that the generator is exhausted. * /
if (result = = Py_None && f - >f_stacktop = = NULL) {
Py_DECREF(result);
result = NULL;
/ * Set exception if not called by gen_iternext() * /
if (arg)
PyErr_SetNone(PyExc_StopIteration);
}
if (!result || f - >f_stacktop = = NULL) {
/ * generator can't be rerun, so release the frame * /
Py_DECREF(f);
gen - >gi_frame = NULL;
}
return result;
}
|
字节码的执行
PyEval_EvalFrameEx函数的功能为执行字节码并返回结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
# 主要流程如下,
for (;;) {
switch(opcode) { # opcode为操作码,对应着各种操作
case NOP:
goto fast_next_opcode;
...
...
case YIELD_VALUE: # 如果操作码是yield
retval = POP();
f - >f_stacktop = stack_pointer;
why = WHY_YIELD;
goto fast_yield; # 利用goto跳出循环
}
}
fast_yield:
...
return vetval; # 返回结果
# 主要流程如下,
for (;;) {
switch(opcode) { # opcode为操作码,对应着各种操作
case NOP:
goto fast_next_opcode;
...
...
case YIELD_VALUE: # 如果操作码是yield
retval = POP();
f - >f_stacktop = stack_pointer;
why = WHY_YIELD;
goto fast_yield; # 利用goto跳出循环
}
}
fast_yield:
...
return vetval; # 返回结果
|
举一个例子,f_back上一个Frame,f_lasti上一次执行的指令的偏移量,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
import sys
from dis import dis
def func():
f = sys._getframe( 0 )
print f.f_lasti
print f.f_back
yield 1
print f.f_lasti
print f.f_back
yield 2
a = func()
dis(func)
a. next ()
a. next ()
import sys
from dis import dis
def func():
f = sys._getframe( 0 )
print f.f_lasti
print f.f_back
yield 1
print f.f_lasti
print f.f_back
yield 2
a = func()
dis(func)
a. next ()
a. next ()
|
结果如下,其中第三行的英文为操作码,对应着上面的opcode,每次switch都是在不同的opcode之间进行选择。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
Python
0 LOAD_GLOBAL 0 (sys)
3 LOAD_ATTR 1 (_getframe)
6 LOAD_CONST 1 ( 0 )
9 CALL_FUNCTION 1
12 STORE_FAST 0 (f)
15 LOAD_FAST 0 (f)
18 LOAD_ATTR 2 (f_lasti)
21 PRINT_ITEM
22 PRINT_NEWLINE
23 LOAD_FAST 0 (f)
26 LOAD_ATTR 3 (f_back)
29 PRINT_ITEM
30 PRINT_NEWLINE
31 LOAD_CONST 2 ( 1 )
34 YIELD_VALUE # 此时操作码为YIELD_VALUE,直接跳转上述goto语句,此时f_lasti为当前指令,f_back为当前frame
35 POP_TOP
36 LOAD_FAST 0 (f)
39 LOAD_ATTR 2 (f_lasti)
42 PRINT_ITEM
43 PRINT_NEWLINE
44 LOAD_FAST 0 (f)
47 LOAD_ATTR 3 (f_back)
50 PRINT_ITEM
51 PRINT_NEWLINE
52 LOAD_CONST 3 ( 2 )
55 YIELD_VALUE
56 POP_TOP
57 LOAD_CONST 0 ( None )
60 RETURN_VALUE
<frame object at 0x7fa75fcebc20 > #和下面的frame相同,属于同一个frame,也就是说在同一个函数(命名空间)内,frame是同一个。
<frame object at 0x7fa75fcebc20 >
0 LOAD_GLOBAL 0 (sys)
3 LOAD_ATTR 1 (_getframe)
6 LOAD_CONST 1 ( 0 )
9 CALL_FUNCTION 1
12 STORE_FAST 0 (f)
15 LOAD_FAST 0 (f)
18 LOAD_ATTR 2 (f_lasti)
21 PRINT_ITEM
22 PRINT_NEWLINE
23 LOAD_FAST 0 (f)
26 LOAD_ATTR 3 (f_back)
29 PRINT_ITEM
30 PRINT_NEWLINE
31 LOAD_CONST 2 ( 1 )
34 YIELD_VALUE # 此时操作码为YIELD_VALUE,直接跳转上述goto语句,此时f_lasti为当前指令,f_back为当前frame
35 POP_TOP
36 LOAD_FAST 0 (f)
39 LOAD_ATTR 2 (f_lasti)
42 PRINT_ITEM
43 PRINT_NEWLINE
44 LOAD_FAST 0 (f)
47 LOAD_ATTR 3 (f_back)
50 PRINT_ITEM
51 PRINT_NEWLINE
52 LOAD_CONST 3 ( 2 )
55 YIELD_VALUE
56 POP_TOP
57 LOAD_CONST 0 ( None )
60 RETURN_VALUE
<frame object at 0x7fa75fcebc20 > #和下面的frame相同,属于同一个frame,也就是说在同一个函数(命名空间)内,frame是同一个。
<frame object at 0x7fa75fcebc20 >
|
总结
以上所述是小编给大家介绍的Python yield与实现方法代码分析,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!