Bagging 和 Boosting 都属于机器学习中的元算法(meta-algorithms)。所谓元算法,简单来讲,就是将几个较弱的机器学习算法综合起来,构成一个更强的机器学习模型。这种「三个臭皮匠,赛过诸葛亮」的做法,可以帮助减小方差(over-fitting)和偏差(under-fitting),提高准确率。
狭义的理解:Bagging,Boosting 为这种元算法的训练提供了一种采样的思路。
Boosting
Boosting 最著名的实现版本应该是 AdaBoost 了。
Boosting 的流程一般为:
- 从数据集 D 中,无放回地、随机地挑选出一个子集 d1,训练一个弱的分类器 C1;
- 从数据集 D 中,无放回地、随机地挑选出一个子集 d2,再加上一部分上一步被错分类的样本,训练一个弱分类器 C2;
- 重复步骤 2,直到所有分类器都训练完毕;
- 综合所有的弱分类器,并为每个分类器赋予一个权值。
Bagging
采用 Bagging 原理的机器学习算法,代表的有 Random Forest(有些许改进)。
理解 Bagging 之前,需要先简单了解一下 Bootstrap 的概念。Bootstrap 是一种有放回的随机采样过程(注意,Boosting 是无放回的)。
Bagging 指的其实是 Bootstrap AGGregatING,「aggregating」是聚合的意思,也就是说,Bagging 是 Bootstrap 的增强版。
Bagging 的流程一般为:
- 根据 bootstrap 方法,生成 n 个不同的子集;
- 在每个子集上,单独地训练弱分类器(或者说,子机器学习模型);
- 预测时,将每个子模型的预测结果平均一下,作为最终的预测结果。
Bagging 和 Boosting 对比
Bagging 这种有放回的采样策略,可以减少 over-fitting,而 Boosting 会修正那些错分类的样本,因此能提高准确率(但也可能导致 overfitting )。
Bagging 由于样本之间没有关联,因此它的训练是可以并行的,比如 Random Forest 中,每一棵决策树都是可以同时训练的。Boosting 由于需要考虑上一步错分类的样本,因此需要顺序进行。
参考
- What's the difference between boosting and bagging?
- Bagging, boosting and stacking in machine learning
- bootstrap, boosting, bagging 几种方法的联系
Bagging, Boosting, Bootstrap的更多相关文章
-
快速理解bootstrap,bagging,boosting,gradient boost-三个概念
1 booststraping:意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法. 其核心思想和基本步骤如下: (1 ...
-
Jackknife,Bootstrap, Bagging, Boosting, AdaBoost, RandomForest 和 Gradient Boosting的区别
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统 ...
-
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别
引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...
-
【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆, ...
-
Ensemble Learning: Bootstrap aggregating (Bagging) &; Boosting &; Stacked generalization (Stacking)
Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. ...
-
机器学习 - 算法 - 集成算法 - 分类 ( Bagging , Boosting , Stacking) 原理概述
Ensemble learning - 集成算法 ▒ 目的 让机器学习的效果更好, 量变引起质变 继承算法是竞赛与论文的神器, 注重结果的时候较为适用 集成算法 - 分类 ▒ Bagging - bo ...
-
机器学习入门-集成算法(bagging, boosting, stacking)
目的:为了让训练效果更好 bagging:是一种并行的算法,训练多个分类器,取最终结果的平均值 f(x) = 1/M∑fm(x) boosting: 是一种串行的算法,根据前一次的结果,进行加权来提高 ...
-
转载:bootstrap, boosting, bagging 几种方法的联系
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...
-
bootstrap, boosting, bagging 几种方法的联系
http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...
随机推荐
-
CentOS6.5安装readline时报错:/usr/bin/ld : cannot find -lncurses
CentOS6.5安装readline时报错:/usr/bin/ld : cannot find -lncurses 解决方法: 安装ncurses-devel,输入命令: #yum install ...
-
【数论】UVa 10586 - Polynomial Remains
Problem F: Polynomial Remains Given the polynomial a(x) = an xn + ... + a1 x + a0, compute the remai ...
-
程序员利器Tmux使用手册
转:https://blog.csdn.net/chenqiuge1984/article/details/80132042
-
MQTT
1.IBM提出,适用于IOT,订阅和发布模式. 2.订阅和发布模式:这种模式是异步的形式,有些类似于邮件接发的形式,发送者将邮件发至代理,接收者如果没同时接收,也不影响发送者的二次发送. 3.主题模式 ...
-
机器学习是万能的吗?AI落地有哪些先决条件?
机器学习是万能的吗?AI落地有哪些先决条件? https://mp.weixin.qq.com/s/9rNY2YA3BMpoY8NQ_rVIjQ 1.引言 入门机器学习或从事其相关工作前,不知道你思考 ...
-
ReportMachine OCX 的使用方法
ReportMachine OCX http://rmachine.haotui.com/thread-55-1-1.html RMReport.ocx RMEngine.Init(1); // 初始 ...
-
c#中ref和out使用及区别
在c#中,使用方法获得返回值时,只能获取一个返回值.当使用ref和out关键字后,可以获取多个返回值. MSDN对ref和out关键字的说明如下: ref 关键字: 使参数按引用传递.其效果是,当控制 ...
-
关于lora标配SPDT大功率射频开关
SPDT大功率的UltraCMOS ™DC - 3.0 GHz射频开关 PE4259的UltraCMOS ™射频开关被设计为覆盖广泛的,通过3000兆赫从近DC应用.这种反射 ...
-
Linux--忘记MySQL密码的解决方法和输入mysqld_safe --skip-grant-tables &;后无法进入MySQL的解决方法
https://blog.csdn.net/qq_35389417/article/details/78910974
-
JavaScipt——Windows.document对象
四中选择器:class ,id , name , 标签 通过选择器获取对象: document.getElementById(''); -- id选择器 ...................... ...