设f[i][j]为由根进入遍历完i子树,最后一个到达的点是j时的最小代价,g[i][j]为由子树内任意一点开始遍历完i子树,最后一个到达的点是j时的最小代价,因为是一棵完全二叉树,状态数量是nlogn的。转移考虑四种走法:根→左子树→右子树;根→右子树→左子树;左子树→根→右子树;右子树→根→左子树 即可。好像和大多数题解不一样,明明感觉这种做法比较显然。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
#define inf 100000000000000000ll
int n,a[N],p[N],deep[N],t;
vector<int> son[N];
vector<long long> f[N],g[N];
struct data{int to,nxt,len;
}edge[N];
void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,p[x]=t;}
void dfs(int k)
{
int cnt=;
for (int i=p[k];i;i=edge[i].nxt)
{
cnt++;
deep[edge[i].to]=deep[k]+edge[i].len;
dfs(edge[i].to);
for (int j=;j<son[edge[i].to].size();j++)
son[k].push_back(son[edge[i].to][j]);
}
son[k].push_back(k);
if (cnt==) {f[k].push_back();g[k].push_back();return;}
if (cnt==)
{
long long v=inf;
for (int i=;i<son[k].size()-;i++)
f[k].push_back(f[edge[p[k]].to][i]+1ll*edge[p[k]].len*a[edge[p[k]].to]),
g[k].push_back(f[k][i]),v=min(v,f[edge[p[k]].to][i]+1ll*(deep[son[edge[p[k]].to][i]]-deep[k])*a[k]);
f[k].push_back(inf),g[k].push_back(v);
}
else
{
long long P=inf,Q=inf,X=inf,Y=inf;
int x=edge[p[k]].to,y=edge[edge[p[k]].nxt].to,w=edge[p[k]].len,v=edge[edge[p[k]].nxt].len;
for (int i=;i<son[x].size();i++)
P=min(P,f[x][i]+1ll*w*a[x]+1ll*(deep[son[x][i]]-deep[k])*a[y]),
X=min(X,g[x][i]+1ll*(deep[son[x][i]]-deep[k])*a[k]);
for (int i=;i<son[y].size();i++)
Q=min(Q,f[y][i]+1ll*v*a[y]+1ll*(deep[son[y][i]]-deep[k])*a[x]),
Y=min(Y,g[y][i]+1ll*(deep[son[y][i]]-deep[k])*a[k]);
X=min(X,P),Y=min(Y,Q);
for (int i=;i<son[x].size();i++)
f[k].push_back(Q+1ll*w*a[x]+f[x][i]),g[k].push_back(Y+1ll*w*a[x]+f[x][i]);
for (int i=;i<son[y].size();i++)
f[k].push_back(P+1ll*v*a[y]+f[y][i]),g[k].push_back(X+1ll*v*a[y]+f[y][i]);
f[k].push_back(inf),g[k].push_back(inf);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4446.in","r",stdin);
freopen("bzoj4446.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<n;i++) addedge(i+>>,i+,read());
dfs();
long long ans=inf;
for (int i=;i<son[].size();i++) ans=min(ans,g[][i]);
cout<<ans;
return ;
}
BZOJ4446 SCOI2015小凸玩密室(树形dp)的更多相关文章
-
[BZOJ4446]SCoi2015 小凸玩密室 树形DP(烧脑高能预警)
4446: [Scoi2015]小凸玩密室 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点 ...
-
BZOJ4446:[SCOI2015]小凸玩密室(树形DP)
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室. 每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...
-
LUOGU P4253 [SCOI2015]小凸玩密室(树形dp)
传送门 解题思路 玄学树形\(dp\),题目描述极其混乱...看错了两次题,设首先根据每次必须点完子树里的灯才能点别的,那么点灯情况只有两种,第一种是点到某一个祖先,第二种是点到某一个祖先的兄弟.所以 ...
-
BZOJ.4446.[SCOI2015]小凸玩密室(树形DP)
BZOJ LOJ 洛谷 (下面点亮一个灯泡就说成染色了,感觉染色比较顺口... 注意完全二叉树\(\neq\)满二叉树,点亮第一个灯泡\(\neq\)第一次点亮一号灯泡,根节点应该就是\(1\)... ...
-
BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】
题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...
-
2019.03.26 bzoj4446: [Scoi2015]小凸玩密室(树形dp)
传送门 题意简述: 给一棵完全二叉树,有点权aia_iai和边权,每个点有一盏灯,现在要按一定要求点亮: 任意时刻点亮的灯泡必须连通 点亮一个灯泡后必须先点亮其子树 费用计算如下:点第一盏灯不要花费 ...
-
BZOJ4446: [Scoi2015]小凸玩密室
用ui,j表示走完i的子树后走到i的深度为j的祖先的兄弟的最小代价: 用vi,j表示走完i的子树后走到i的深度为j的祖先的最小代价,用u算出v. 枚举起点,计算答案. #include<bits ...
-
[bzoj4446] [loj#2009] [Scoi2015] 小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有 \(n\) 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 \(Ai\) ,每条边也有个权值 \ ...
-
bzoj 4446: [Scoi2015]小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...
随机推荐
-
【java基础学习】IO流
IO流 字节流InputStream和OutputStream 字符流Writer和Reader 装饰模式
-
Winsock 入门 计算校验和 示例
#include <stdio.h> #include <string.h> #define DATA_MAX_LEN 14 /* 最大数据长度 */ struct data_ ...
-
为什么模板函数的声明和实现都放在.h文件中
当你不使用这个模板函数或模板类,编译器并不实例化它,当你使用时,编译器需要实例化它,因为编译器是一次只能处理一个编译单元,也就是一次处理一个cpp文件,所以实例化时需要看到该模板的完整定义.所以都放在 ...
-
iOS学习26之UINavigationController
1. UINavigationController 1> 概述 UINavigationController : 导航控制器, 是 iOS 中最常用的多视图控制器之一, 用它来管理多个视图控制器 ...
-
cookie案例-显示用户上次访问网站的时间
package cn.itcast.cookie; import java.io.IOException; import java.io.PrintWriter; import java.util.D ...
-
编写 Window 服务程序
编写 Window 服务程序 一.直观认识Windows服务. 打开Windows“控制面板/管理工具/服务”,系统显示Windows服务列表. ...
-
Hash (poj2002-Squares &; poj3349-Snowflake Snow Snowflakes)
//突然发现好弱,好多基础的算法竟然都不会,哈希这种经典的算法,我貌似基本没怎么做过相关的题0.0 POJ2002 题意:给n个点,问有多少组四个点能组成正方形. 题解:枚举两个点,通过公式算出另外两 ...
-
supervisor tornado 多进程多端口配置
base: nginx tornado 目标: tornado 实现多端口多进程运行 pip install supervisor echo_supervisord_conf > /etc/su ...
-
【原创】大叔经验分享(23)spark sql插入表时的文件个数研究
spark sql执行insert overwrite table时,写到新表或者新分区的文件个数,有可能是200个,也有可能是任意个,为什么会有这种差别? 首先看一下spark sql执行inser ...
-
暑期培训7日游解题思路(day1~day3)
暑期培训7日游解题思路(day1~day3) day1 第一天,王聿中老师出的题目比较简单,T1很水,T2是个简单的DP,T3还是有一点意思的.在网格图中删掉若干条边,使得所有格子都联通,求删掉的边的 ...