C++实现LeetCode(105.由先序和中序遍历建立二叉树)

时间:2021-08-09 00:46:55

[LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

For example, given

preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]

Return the following binary tree:

    3
/ \
9  20
/  \
15   7

这道题要求用先序和中序遍历来建立二叉树,跟之前那道 Construct Binary Tree from Inorder and Postorder Traversal 原理基本相同,针对这道题,由于先序的顺序的第一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数,参见代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
    TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
        return buildTree(preorder, 0, preorder.size() - 1, inorder, 0, inorder.size() - 1);
    }
    TreeNode *buildTree(vector<int> &preorder, int pLeft, int pRight, vector<int> &inorder, int iLeft, int iRight) {
        if (pLeft > pRight || iLeft > iRight) return NULL;
        int i = 0;
        for (i = iLeft; i <= iRight; ++i) {
            if (preorder[pLeft] == inorder[i]) break;
        }
        TreeNode *cur = new TreeNode(preorder[pLeft]);
        cur->left = buildTree(preorder, pLeft + 1, pLeft + i - iLeft, inorder, iLeft, i - 1);
        cur->right = buildTree(preorder, pLeft + i - iLeft + 1, pRight, inorder, i + 1, iRight);
        return cur;
    }
};

下面来看一个例子, 某一二叉树的中序和后序遍历分别为:

Preorder:    5  4  11  8  13  9

Inorder:    11  4  5  13  8  9

5  4  11  8  13  9      =>          5

11  4  5  13  8  9                /  \

4  11     8   13  9      =>         5

11  4     13  8  9                  /  \

                             4   8

11       13    9        =>         5

11       13    9                    /  \

                             4   8

                            /    /     \

                           11    13    9

做完这道题后,大多人可能会有个疑问,怎么没有由先序和后序遍历建立二叉树呢,这是因为先序和后序遍历不能唯一的确定一个二叉树,比如下面五棵树:

1      preorder:    1  2  3
/ \       inorder:       2  1  3
2 3       postorder:   2  3  1

1       preorder:     1  2  3
/       inorder:       3  2  1
2          postorder:   3  2  1
/
3

1        preorder:    1  2  3
/        inorder:      2  3  1
2       postorder:  3  2  1
\
3

       1         preorder:    1  2  3
\        inorder:      1  3  2
2      postorder:  3  2  1
/
3

       1         preorder:    1  2  3
\      inorder:      1  2  3
2      postorder:  3  2  1
\
3

从上面我们可以看出,对于先序遍历都为 1 2 3 的五棵二叉树,它们的中序遍历都不相同,而它们的后序遍历却有相同的,所以只有和中序遍历一起才能唯一的确定一棵二叉树。但可能会有小伙伴指出,那第 889 题 Construct Binary Tree from Preorder and Postorder Traversal 不就是从先序和后序重建二叉树么?难道博主被啪啪打脸了么?难道博主的一世英名就此毁于一旦了么?不,博主向命运的不公说不,请仔细看那道题的要求 "Return any binary tree that matches the given preorder and postorder traversals.",是让返回任意一棵二叉树即可,所以这跟博主的结论并不矛盾。长舒一口气,博主的晚节保住了~

Github 同步地址:

https://github.com/grandyang/leetcode/issues/105

类似题目:

Construct Binary Tree from Inorder and Postorder Traversal

Construct Binary Tree from Preorder and Postorder Traversal

参考资料:

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/discuss/34538/My-Accepted-Java-Solution

https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/discuss/34562/Sharing-my-straightforward-recursive-solution

到此这篇关于C++实现LeetCode(105.由先序和中序遍历建立二叉树)的文章就介绍到这了,更多相关C++实现由先序和中序遍历建立二叉树内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://www.cnblogs.com/grandyang/p/4296500.html