山东省ACM多校联盟省赛个人训练第六场 D Rotating Scoreboard
https://vjudge.net/problem/POJ-3335
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
This year, ACM/ICPC World finals will be held in a hall in form of a simple polygon. The coaches and spectators are seated along the edges of the polygon. We want to place a rotating scoreboard somewhere in the hall such that a spectator sitting anywhere on the boundary of the hall can view the scoreboard (i.e., his line of sight is not blocked by a wall). Note that if the line of sight of a spectator is tangent to the polygon boundary (either in a vertex or in an edge), he can still view the scoreboard. You may view spectator's seats as points along the boundary of the simple polygon, and consider the scoreboard as a point as well. Your program is given the corners of the hall (the vertices of the polygon), and must check if there is a location for the scoreboard (a point inside the polygon) such that the scoreboard can be viewed from any point on the edges of the polygon.
输入描述:
The first line contains three integers N, M, G(0 < N, M ≤ 500, 0 ≤ G ≤ 200).
Each of the following N lines contains M integers, representing the matrix. It is guaranteed that every integer in the matrix is in the range [-100, 100].
输出描述:
Output the maximum L in a single line.The first number in the input line, T is the number of test cases. Each test case is specified on a single line of input in the form n x
1
y
1
x
2
y
2
... xn ynwhere n (3 ≤ n ≤ 100) is the number of vertices in the polygon, and the pair of integers xi yi sequence specify the vertices of the polygon sorted in order.
示例1
输入
2
4 0 0 0 1 1 1 1 0
8 0 0 0 2 1 2 1 1 2 1 2 2 3 2 3 0
输出
YES
NO
分析
题目的意思就是在一个多边形的各个角上看整个区域,会不会有一个区域可以被所有的点都看到,或者反过来说可不可以找到一个点当做光源,使得这个光源发出的光各个点都能看到。
如果对平面几何有所了解的话,会立刻意识到这是多边形的核。
可惜我不是大神,我只是知道,这个东西是一个模板,而且我见过,这个模板叫啥,不知道,怎么用,不知道,用途是啥,不知道(否认三连)。
从网上超级容易直接就找到了教程和模板(之前做过类似的题目),直接使用AC掉本题一血并AK。
还是得多积累一些板子啊,不知道啥时候就用到了。
AC代码:
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <time.h>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <vector>
#include <string.h>
#define sf scanf
#define pf printf
#define lf double
#define ll long long
#define p123 printf("123\n");
#define pn printf("\n");
#define pk printf(" ");
#define p(n) printf("%d",n);
#define pln(n) printf("%d\n",n);
#define s(n) scanf("%d",&n);
#define ss(n) scanf("%s",n);
#define ps(n) printf("%s",n);
#define sld(n) scanf("%lld",&n);
#define pld(n) printf("%lld",n);
#define slf(n) scanf("%lf",&n);
#define plf(n) printf("%lf",n);
#define sc(n) scanf("%c",&n);
#define pc(n) printf("%c",n);
#define gc getchar();
#define re(n,a) memset(n,a,sizeof(n));
#define len(a) strlen(a)
#define LL long long using namespace std;
const double pi = 3.1415926535;
/*
https://codeforces.com/contest/1106/problems
https://codeforces.com/contest/1106/submit
*/ //2.6 随机素数测试和大数分解(POJ 1811)
/* *************************************************
* Miller_Rabin 算法进行素数测试
* 速度快可以判断一个< 2^63 的数是不是素数
**************************************************//*
const int S = 8; //随机算法判定次数一般8∼10 就够了
// 计算ret = (a*b)%c a,b,c < 2^63
long long mult_mod(long long a,long long b,long long c) {
a %= c;
b %= c;
long long ret = 0;
long long tmp = a;
while(b) {
if(b & 1) {
ret += tmp;
if(ret > c)
ret -= c;//直接取模慢很多
}
tmp <<= 1;
if(tmp > c)
tmp -= c;
b >>= 1;
}
return ret;
}
// 计算ret = (a^n)%mod
long long pow_mod(long long a,long long n,long long mod) {
long long ret = 1;
long long temp = a%mod;
while(n) {
if(n & 1)
ret = mult_mod(ret,temp,mod);
temp = mult_mod(temp,temp,mod);
n >>= 1;
}
return ret;
}
// 通过a^(n-1)=1(mod n)来判断n 是不是素数
// n - 1 = x ∗ 2t 中间使用二次判断
// 是合数返回true, 不一定是合数返回false
bool check(long long a,long long n,long long x,long long t) {
long long ret = pow_mod(a,x,n);
long long last = ret;
for(int i = 1; i <= t; i++) {
ret = mult_mod(ret,ret,n);
if(ret == 1 && last != 1 && last != n-1)
return true;//合数
last = ret;
}
if(ret != 1)
return true;
else
return false;
}
//**************************************************
// Miller_Rabin 算法
// 是素数返回true,(可能是伪素数)
// 不是素数返回false
//**************************************************
bool Miller_Rabin(long long n) {
if( n < 2)
return false;
if( n == 2)
return true;
if( (n&1) == 0)
return false;//偶数
long long x = n - 1;
long long t = 0;
while( (x&1)==0 ) {
x >>= 1;
t++;
} srand(time(NULL));/* *************** */
/*
for(int i = 0; i < S; i++) {
long long a = rand()%(n-1) + 1;
if( check(a,n,x,t) )
return false;
}
return true;
}
*/ /*
LL gcd(LL a,LL b) {
if(a< b) {
ll t =a;
a =b;
b = t;
}
if(b == 0) {
return a;
} else {
return gcd(b,a%b);
}
}
*/#include<cstdio>
#include<cmath>
#include<algorithm>
#define MAXN 110
using namespace std;
const double eps = 1e-;
struct poi
{
double x,y;
poi(double x = ,double y = ) :x(x),y(y) {}
}pos[MAXN];
typedef poi vec;
vec operator +(vec A,vec B) {return vec(A.x + B.x, A.y + B.y);}
vec operator -(vec A,vec B) {return vec(A.x - B.x, A.y - B.y);}
vec operator *(vec A,double p) {return vec(A.x*p, A.y*p);}
int dcmp(double x)//别打成bool
{
if(fabs(x) < eps) return ;
else return x>?:-;
}
double cross(vec A,vec B) {return A.x*B.y - A.y*B.x;}
double dot(vec A,vec B) {return A.x*B.x + A.y*B.y;}
poi GetLineIntersection(poi A,vec v,poi B,vec w)
{
double t = cross(w,A - B) /cross(v,w);
return A + v*t;
}
bool OnSegment(poi p,poi A,poi B)
{
//return dcmp(cross(A-p,B-p)) == 0&&dcmp(dot(A-p,B-p)) < 0; 不晓得这个为什么被卡了
double mnx = min(A.x, B.x), mxx = max(A.x, B.x);
double mny = min(A.y, B.y), mxy = max(A.y, B.y);
return (mnx <= p.x + eps && p.x - eps <= mxx) && (mny <= p.y + eps && p.y - eps <= mxy);
}
struct polygon{
poi a[MAXN];
int sz;
};
polygon CutPolygon(polygon poly, poi A, poi B)
{
int m = ,n = poly.sz;
polygon newpoly;
for(int i = ; i < n; i++)
{
poi C = poly.a[i], D = poly.a[(i+)%n];
if(dcmp(cross(B - A, C - A)) <= ) newpoly.a[m++] = C;//f**kf**kf**kf**kf**k,题目的边按顺时针给出,所以是<=
if(dcmp(cross(B - A, C - D)) != ){
poi ip = GetLineIntersection(A, B-A, C, D-C);
if(OnSegment(ip, C, D)) newpoly.a[m++] = ip;
}
}
newpoly.sz = m;
return newpoly;
}
bool has_kernel(polygon poly)
{
polygon knl;
knl.a[] = poi(-1e6,-1e6),knl.a[] = poi(1e6,-1e6),knl.a[] = poi(1e6,1e6),knl.a[] = poi(-1e6,1e6);//边界过大也要WA
knl.sz = ;
for(int i = ; i < poly.sz; i++)
{
poi A = poly.a[i], B = poly.a[(i+)%poly.sz];
knl = CutPolygon(knl,A,B);
if(knl.sz == ) return false;
}
return true;
}
int main()
{
polygon poly;
int cas = ,n;
int T = ;
s(T )
while(T --){
s(n) for(int i = ; i < n; i++) scanf("%lf%lf",&poly.a[i].x,&poly.a[i].y);
poly.sz = n;
//printf("Floor #%d\n",++cas);
if(has_kernel(poly)) printf("YES\n");
else printf("NO\n"); }
}