使用matlab在多变量情况下偏斜正态分布

时间:2021-10-10 00:59:50

how can we generate random numbers using skew normal distribution in multivariate case?

在多变量情况下,如何使用偏态正态分布生成随机数?

1 个解决方案

#1


2  

Use the rsn function from the sn package in R (as I think from another question that R will work for you also):

使用R中sn包中的rsn函数(我想从另一个R也适合你的问题):

rsn(n=100, location=1.256269, scale=1.605681, shape=5)

Will generate 100 (n) random numbers from a skew-normal distribution with the required location, scale and shape. Use higher sample size for plotting, e.g.:

将从具有所需位置,比例和形状的偏斜正态分布生成100(n)个随机数。使用更高的样本量进行绘图,例如:

hist(rsn(n=10000, location=1.256269, scale=1.605681, shape=5))

使用matlab在多变量情况下偏斜正态分布

#1


2  

Use the rsn function from the sn package in R (as I think from another question that R will work for you also):

使用R中sn包中的rsn函数(我想从另一个R也适合你的问题):

rsn(n=100, location=1.256269, scale=1.605681, shape=5)

Will generate 100 (n) random numbers from a skew-normal distribution with the required location, scale and shape. Use higher sample size for plotting, e.g.:

将从具有所需位置,比例和形状的偏斜正态分布生成100(n)个随机数。使用更高的样本量进行绘图,例如:

hist(rsn(n=10000, location=1.256269, scale=1.605681, shape=5))

使用matlab在多变量情况下偏斜正态分布