How do I calculate the inverse of the cumulative distribution function (CDF) of the normal distribution in Python?
如何计算Python中正态分布的累积分布函数(CDF)的倒数?
Which library should I use? Possibly scipy?
我应该使用哪个库?可能是scipy?
2 个解决方案
#1
77
NORMSINV (mentioned in a comment) is the inverse of the CDF of the standard normal distribution. Using scipy
, you can compute this with the ppf
method of the scipy.stats.norm
object. The acronym ppf
stands for percent point function, which is another name for the quantile function.
NORMSINV(在评论中提到)是标准正态分布的CDF的倒数。使用scipy,您可以使用scipy.stats.norm对象的ppf方法计算它。首字母缩写词ppf代表百分点函数,它是分位数函数的另一个名称。
In [20]: from scipy.stats import norm
In [21]: norm.ppf(0.95)
Out[21]: 1.6448536269514722
Check that it is the inverse of the CDF:
检查它是否与CDF相反:
In [34]: norm.cdf(norm.ppf(0.95))
Out[34]: 0.94999999999999996
By default, norm.ppf
uses mean=0 and stddev=1, which is the "standard" normal distribution. You can use a different mean and standard deviation by specifying the loc
and scale
arguments, respectively.
默认情况下,norm.ppf使用mean = 0和stddev = 1,这是“标准”正态分布。您可以分别通过指定loc和scale参数来使用不同的均值和标准差。
In [35]: norm.ppf(0.95, loc=10, scale=2)
Out[35]: 13.289707253902945
If you look at the source code for scipy.stats.norm
, you'll find that the ppf
method ultimately calls scipy.special.ndtri
. So to compute the inverse of the CDF of the standard normal distribution, you could use that function directly:
如果你查看scipy.stats.norm的源代码,你会发现ppf方法最终调用scipy.special.ndtri。因此,要计算标准正态分布的CDF的倒数,您可以直接使用该函数:
In [43]: from scipy.special import ndtri
In [44]: ndtri(0.95)
Out[44]: 1.6448536269514722
#2
6
# given random variable X (house price) with population muy = 60, sigma = 40
import scipy as sc
import scipy.stats as sct
sc.version.full_version # 0.15.1
#a. Find P(X<50)
sct.norm.cdf(x=50,loc=60,scale=40) # 0.4012936743170763
#b. Find P(X>=50)
sct.norm.sf(x=50,loc=60,scale=40) # 0.5987063256829237
#c. Find P(60<=X<=80)
sct.norm.cdf(x=80,loc=60,scale=40) - sct.norm.cdf(x=60,loc=60,scale=40)
#d. how much top most 5% expensive house cost at least? or find x where P(X>=x) = 0.05
sct.norm.isf(q=0.05,loc=60,scale=40)
#e. how much top most 5% cheapest house cost at least? or find x where P(X<=x) = 0.05
sct.norm.ppf(q=0.05,loc=60,scale=40)
#1
77
NORMSINV (mentioned in a comment) is the inverse of the CDF of the standard normal distribution. Using scipy
, you can compute this with the ppf
method of the scipy.stats.norm
object. The acronym ppf
stands for percent point function, which is another name for the quantile function.
NORMSINV(在评论中提到)是标准正态分布的CDF的倒数。使用scipy,您可以使用scipy.stats.norm对象的ppf方法计算它。首字母缩写词ppf代表百分点函数,它是分位数函数的另一个名称。
In [20]: from scipy.stats import norm
In [21]: norm.ppf(0.95)
Out[21]: 1.6448536269514722
Check that it is the inverse of the CDF:
检查它是否与CDF相反:
In [34]: norm.cdf(norm.ppf(0.95))
Out[34]: 0.94999999999999996
By default, norm.ppf
uses mean=0 and stddev=1, which is the "standard" normal distribution. You can use a different mean and standard deviation by specifying the loc
and scale
arguments, respectively.
默认情况下,norm.ppf使用mean = 0和stddev = 1,这是“标准”正态分布。您可以分别通过指定loc和scale参数来使用不同的均值和标准差。
In [35]: norm.ppf(0.95, loc=10, scale=2)
Out[35]: 13.289707253902945
If you look at the source code for scipy.stats.norm
, you'll find that the ppf
method ultimately calls scipy.special.ndtri
. So to compute the inverse of the CDF of the standard normal distribution, you could use that function directly:
如果你查看scipy.stats.norm的源代码,你会发现ppf方法最终调用scipy.special.ndtri。因此,要计算标准正态分布的CDF的倒数,您可以直接使用该函数:
In [43]: from scipy.special import ndtri
In [44]: ndtri(0.95)
Out[44]: 1.6448536269514722
#2
6
# given random variable X (house price) with population muy = 60, sigma = 40
import scipy as sc
import scipy.stats as sct
sc.version.full_version # 0.15.1
#a. Find P(X<50)
sct.norm.cdf(x=50,loc=60,scale=40) # 0.4012936743170763
#b. Find P(X>=50)
sct.norm.sf(x=50,loc=60,scale=40) # 0.5987063256829237
#c. Find P(60<=X<=80)
sct.norm.cdf(x=80,loc=60,scale=40) - sct.norm.cdf(x=60,loc=60,scale=40)
#d. how much top most 5% expensive house cost at least? or find x where P(X>=x) = 0.05
sct.norm.isf(q=0.05,loc=60,scale=40)
#e. how much top most 5% cheapest house cost at least? or find x where P(X<=x) = 0.05
sct.norm.ppf(q=0.05,loc=60,scale=40)