I struggle with the following task: I need to generate data from a truncated normal distribution. The sample mean and standard deviation should match exactly those specified in the population. This is what I have so far:
我与以下任务进行了斗争:我需要从截断的正态分布中生成数据。样本均值和标准差应该与总体中指定的完全一致。这是我目前所拥有的:
mean <- 100
sd <- 5
lower <- 40
upper <- 120
n <- 100
library(msm)
data <- as.numeric(mean+sd*scale(rtnorm(n, lower=40, upper=120)))
The sample that's created takes on exactly the mean and sd specified in the population. But some values exceed the intended bounds. Any idea how to fix this? I was thinking of just cutting off all values outside these bounds, but then mean and sd don't resemble those of the population anymore.
所创建的样本恰好具有总体中指定的均值和sd。但是有些值超出了预期的范围。你知道怎么解决这个问题吗?我想把这些界限之外的所有值都去掉,然后均值和sd就不再像这些了。
1 个解决方案
#1
2
You could use an iterative answer. Here I add samples one by one to the vector, but only if the resulting scaled dataset remains within the boundaries that you set. It takes longer, but it works:
你可以用一个迭代的答案。在这里,我逐一向向量添加样本,但前提是得到的缩放数据集仍然在您设置的边界内。
n <- 10000
mean <- 100
sd <- 15
lower <- 40
upper <- 120
data <- rtnorm(1, lower=((lower - mean)/sd), upper=((upper - mean)/sd))
while (length(data) < n) {
sample <- rtnorm(1, lower=((lower - mean)/sd), upper=((upper - mean)/sd))
data_copy = c(data, sample)
data_copy_scaled = mean + sd * scale(data_copy)
if (min(data_copy_scaled) >= lower & max(data_copy_scaled) <= upper) {
data = c(data, sample)
}
}
scaled_data = as.numeric(mean + sd * scale(data))
summary(scaled_data)
Min. 1st Qu. Median Mean 3rd Qu. Max.
40.38 91.61 104.35 100.00 111.28 120.00
sd(scaled_data)
15
Below my old answer, which doesn't quite work
在我的老答案下面,这并不怎么管用
How about scaling the lower and upper limits of rtnorm
with the mean and sd that you want?
用你想要的平均值和sd扩展rtnorm的下限和上限怎么样?
n <- 1000000
mean <- 100
sd <- 5
library(msm)
data <- as.numeric(mean+sd*scale(rtnorm(n, lower=((40 - mean)/sd), upper=((120 - mean)/sd))))
summary(data)
Min. 1st Qu. Median Mean 3rd Qu. Max.
76.91 96.63 100.00 100.00 103.37 120.00
sd(data)
5
In this case, even with a sample of 1000000 you get the exact mean and sd, and the max and min values remain within your boundaries.
在这种情况下,即使样本是1000000,你也会得到准确的平均值和sd,最大值和最小值仍然在你的范围内。
#1
2
You could use an iterative answer. Here I add samples one by one to the vector, but only if the resulting scaled dataset remains within the boundaries that you set. It takes longer, but it works:
你可以用一个迭代的答案。在这里,我逐一向向量添加样本,但前提是得到的缩放数据集仍然在您设置的边界内。
n <- 10000
mean <- 100
sd <- 15
lower <- 40
upper <- 120
data <- rtnorm(1, lower=((lower - mean)/sd), upper=((upper - mean)/sd))
while (length(data) < n) {
sample <- rtnorm(1, lower=((lower - mean)/sd), upper=((upper - mean)/sd))
data_copy = c(data, sample)
data_copy_scaled = mean + sd * scale(data_copy)
if (min(data_copy_scaled) >= lower & max(data_copy_scaled) <= upper) {
data = c(data, sample)
}
}
scaled_data = as.numeric(mean + sd * scale(data))
summary(scaled_data)
Min. 1st Qu. Median Mean 3rd Qu. Max.
40.38 91.61 104.35 100.00 111.28 120.00
sd(scaled_data)
15
Below my old answer, which doesn't quite work
在我的老答案下面,这并不怎么管用
How about scaling the lower and upper limits of rtnorm
with the mean and sd that you want?
用你想要的平均值和sd扩展rtnorm的下限和上限怎么样?
n <- 1000000
mean <- 100
sd <- 5
library(msm)
data <- as.numeric(mean+sd*scale(rtnorm(n, lower=((40 - mean)/sd), upper=((120 - mean)/sd))))
summary(data)
Min. 1st Qu. Median Mean 3rd Qu. Max.
76.91 96.63 100.00 100.00 103.37 120.00
sd(data)
5
In this case, even with a sample of 1000000 you get the exact mean and sd, and the max and min values remain within your boundaries.
在这种情况下,即使样本是1000000,你也会得到准确的平均值和sd,最大值和最小值仍然在你的范围内。