bzoj1041题解

时间:2021-07-13 01:06:22

求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。r<=2000
000 000 

这道题刚看时,就明白暴力不能解决一切。要是r^2<=20亿,还可以sqrt循环,这样的话只能用数学方法了。

(嘘!本数学方法的关键一步是借鉴来的)

x^2+y^2=r^2

x^2=r^2-y^2

x^2=(r+y)(r-y)

我们设gcd(r+y,r-y)=d                                                                           //不知道什么是GCD?就是最大公因数 

再设m=(r+y)/d,n=(r-y)/d,易得gcd(m,n)=1

因为m*n=x^2/d/d,即m*n是平方数。

又因为m和n互质,所以它们分别是平方数,我们还可以设m=u^2,n=v^2 。

带回去,r+y=d*u^2,r-y=d*v^2。

两式相加,2r=d(u^2+v^2)

加到这里,这些字母都表示整数。

现在我们的目标达成了:即把r^2降成了r。

我们可以枚举sqrt(2r),再依次判断是否有整数的u,v,且它们是否互质 。

最后还要注意以下:首先,所得结果要乘4 ,比如(3,4),还有(3,-4),(-3,4),(-3,-4)。

当然,如果x=0或y=0是一定可以的。最后还要加上4,即(0,r),(r,0),(0,-r),(-r,0)。(呵呵,r不等于0,O(∩_∩)O~~)

以下附代码:

#include<cstdio>
#include<cmath>
using namespace std;
const double jing=0.00000001;
long gcd(long a,long b){if (a%b==0) return b;return gcd(b,a%b);}
long long ans=0,r,temp;long i,j;double t;
int main()
{
  scanf("%lld",&r);r*=2;
  for (i=1;i<=trunc(sqrt(r));i++)
    if (r%i==0)
    {
      temp=r/i;
      for (j=1;j<=trunc(sqrt(temp));j++)
      {
        t=trunc(sqrt(temp-j*j));if (t<=j) break;
        if (t*t+j*j==temp){if (gcd(j,t)==1) ans++;}
      }
      if (r/i==i) continue;temp=i;
      for (j=1;j<=trunc(sqrt(temp));j++)
      {
        t=trunc(sqrt(temp-j*j));if (t<=j) break;
        if (t*t+j*j==temp){if (gcd(j,t)==1) ans++;}
      }
    }
  ans*=4;ans+=4;printf("%ld",ans);
  return 0;
}