【微服务】——Docker 基础知识

时间:2024-05-02 09:35:40

这里写自定义目录标题

    • 1.1 了解Docker
      • 1.1.1应用部署的环境问题
      • 1.1.2.Docker解决依赖兼容问题
      • 1.1.3.Docker解决操作系统环境差异
      • 1.1.4.小结
    • 1.2.Docker和虚拟机的区别
    • 1.3.Docker架构
      • 1.3.1.镜像和容器
      • 1.3.2.DockerHub
      • 1.3.3.Docker架构
      • 1.3.4.小结
    • 1.4.==安装Docker——未实践==
  • 2.Docker的基本操作
    • 2.1.镜像操作
      • 2.1.1.镜像名称
      • 2.1.2.镜像命令
      • ==2.1.3.案例1-拉取、查看镜像;案例2-保存、导入镜像==
    • 2.2.容器操作
      • 2.2.1.容器相关命令
      • ==2.2.2.案例-创建并运行一个容器==
      • ==2.2.3.案例-进入容器,修改文件==
      • 2.2.4.小结
    • 2.3.数据卷(容器数据管理)
      • 2.3.1.什么是数据卷
      • 2.3.2.数据集操作命令
      • 2.3.3.创建和查看数据卷

1.1 了解Docker

微服务虽然有很多优势,但是服务的拆分通用给部署带来了很大的问题。

  • 分布式系统中,依赖的组件非常多,不同组件部署往往会产生冲突
  • 在数百上千台服务中重复部署,环境不一定一致,会遇到各种问题

1.1.1应用部署的环境问题

大型项目组件较多,运行环境也较为复杂,部署时会碰到一些问题:

  • 依赖关系复杂,容易出现兼容性问题
  • 开发、测试、生产环境有差异
    例如一个项目中,部署时需要依赖于node.js、Redis、RabbitMQ、MySQL等,这些服务部署时所需要的函数库、依赖项各不相同,甚至会有冲突。给部署带来了极大的困难。

1.1.2.Docker解决依赖兼容问题

而Docker确巧妙的解决了这些问题,
Docker为了解决依赖的兼容问题的,采用了两个手段:

  • 将应用的Libs(函数库)、Deps(依赖)、配置与应用一起打包
  • 将每个应用放到一个隔离容器去运行,避免互相干扰
  • 在这里插入图片描述
    这样打包好的应用包中,既包含应用本身,也包含应用所需要的Libs、Deps,无需再操作系统上安装这些,自然就不存在不同应用之间的兼容问题了。
    虽然解决了不同应用的兼容问题,但是开发、测试等环境会存在差异,操作系统版本也会有差异,怎么解决这些问题呢?

1.1.3.Docker解决操作系统环境差异

要解决不同操作系统环境差异问题,必须先了解操作系统结构。

Docker如何解决不同系统环境的问题?

  • Docker将用户程序与所需要调用的系统(比如Ubuntu)函数库一起打包
  • Docker运行到不同操作系统时,直接基于打包的函数库,借助于操作系统的Linux内核来运行

1.1.4.小结

Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题?

  • Docker允许开发中将应用、依赖、函数库、配置一起打包,形成可移植镜像
  • Docker应用运行在容器中,使用沙箱机制,相互隔离

Docker如何解决开发、测试、生产环境有差异的问题?

  • Docker镜像中包含完整运行环境,包括系统函数库,仅依赖系统的Linux内核,因此可以在任意Linux操作系统上运行

Docker是一个快速交付应用、运行应用的技术,具备下列优势:

  • 可以将程序及其依赖、运行环境一起打包为一个镜像,可以迁移到任意Linux操作系统
  • 运行时利用沙箱机制形成隔离容器,各个应用互不干扰
  • 启动、移除都可以通过一行命令完成,方便快捷

1.2.Docker和虚拟机的区别

Docker可以让一个应用在任何操作系统中非常方便的运行。而以前我们接触的虚拟机,也能在一个操作系统中,运行另外一个操作系统,保护系统中的任何应用。

两者有什么差异呢?
虚拟机(virtual machine)是在操作系统中模拟硬件设备,然后运行另一个操作系统,比如在 Windows 系统里面运行 Ubuntu 系统,这样就可以运行任意的Ubuntu应用了。
Docker仅仅是封装函数库,并没有模拟完整的操作系统,如图:
在这里插入图片描述

特性 DOcker 虚拟机
性能 接近原生 性能较差
硬盘占用 一般为MB 一般为GB
启用 秒级 分钟级
小结:

Docker和虚拟机的差异

  • docker是一个系统进程;虚拟机是在操作系统中的操作系统
  • docker体积小、启动速度快、性能好;虚拟机体积大、启动速度慢、性能一般

1.3.Docker架构

1.3.1.镜像和容器

Docker中有几个重要的概念:

镜像(Image):Docker将应用程序及其所需的依赖、函数库、环境、配置等文件打包在一起,称为镜像。
容器(Container):镜像中的应用程序运行后形成的进程就是容器,只是Docker会给容器进程做隔离,对外不可见。

一切应用最终都是代码组成,都是硬盘中的一个个的字节形成的文件。只有运行时,才会加载到内存,形成进程。

镜像,就是把一个应用在硬盘上的文件、及其运行环境、部分系统函数库文件一起打包形成的文件包。这个文件包是只读的。

容器呢,就是将这些文件中编写的程序、函数加载到内存中允许,形成进程,只不过要隔离起来。因此一个镜像可以启动多次,形成多个容器进程。
例如你下载了一个QQ,如果我们将QQ在磁盘上的运行文件及其运行的操作系统依赖打包,形成QQ镜像。然后你可以启动多次,双开、甚至三开QQ,跟多个妹子聊天。

1.3.2.DockerHub

开源应用程序非常多,打包这些应用往往是重复的劳动。为了避免这些重复劳动,人们就会将自己打包的应用镜像,例如Redis、MySQL镜像放到网络上,共享使用,就像GitHub的代码共享一样。

  • DockerHub:DockerHub是一个官方的Docker镜像的托管平台。这样的平台称为Docker Registry。
  • 国内也有类似于DockerHub 的公开服务,比如 网易云镜像服务阿里云镜像库等。

我们一方面可以将自己的镜像共享到DockerHub,另一方面也可以从DockerHub拉取镜像:
在这里插入图片描述

1.3.3.Docker架构

我们要使用Docker来操作镜像、容器,就必须要安装Docker。

Docker是一个CS架构的程序,由两部分组成:

  • 服务端(server):Docker守护进程,负责处理Docker指令,管理镜像、容器等
  • **客户端(client):**通过命令或RestAPI向Docker服务端发送指令。可以在本地或远程向服务端发送指令。
  • 在这里插入图片描述

1.3.4.小结

镜像:

  • 将应用程序及其依赖、环境、配置打包在一起
    容器:
  • 镜像运行起来就是容器,一个镜像可以运行多个容器

Docker结构:

  • 服务端:接收命令或远程请求,操作镜像或容器
  • 客户端:发送命令或者请求到Docker服务端

DockerHub:

  • 一个镜像托管的服务器,类似的还有阿里云镜像服务,统称为DockerRegistry

1.4.安装Docker——未实践

企业部署一般都是采用Linux操作系统,而其中又数CentOS发行版占比最多,因此我们在CentOS下安装Docker。

2.Docker的基本操作

2.1.镜像操作

2.1.1.镜像名称

首先来看下镜像的名称组成:

  • 镜名称一般分两部分组成:[repository]:[tag]
  • 在没有指定tag时,默认是latest,代表最新版本的镜像
    如图:这里的mysql就是repository,5.7就是tag,合一起就是镜像名称,代表5.7版本的MySQL镜像。
    在这里插入图片描述

2.1.2.镜像命令

常见的镜像操作命令如图:
在这里插入图片描述

2.1.3.案例1-拉取、查看镜像;案例2-保存、导入镜像

2.2.容器操作

2.2.1.容器相关命令

容器操作的命令如图:
在这里插入图片描述
容器保护三个状态:

  • 运行:进程正常运行
  • 暂停:进程暂停,CPU不再运行,并不释放内存
  • 停止:进程终止,回收进程占用的内存、CPU等资源

其中:

  • docker run:创建并运行一个容器,处于运行状态
  • docker pause:让一个运行的容器暂停
  • docker unpause:让一个容器从暂停状态恢复运行
  • docker stop:停止一个运行的容器
  • docker start:让一个停止的容器再次运行
  • docker rm:删除一个容器

2.2.2.案例-创建并运行一个容器

创建并运行nginx容器的命令:

docker run --name containerName -p 80:80 -d nginx

命令解读:

  • docker run :创建并运行一个容器
  • –name : 给容器起一个名字,比如叫做mn
  • -p :将宿主机端口与容器端口映射,冒号左侧是宿主机端口,右侧是容器端口
  • -d:后台运行容器
  • nginx:镜像名称,例如nginx

这里的-p参数,是将容器端口映射到宿主机端口。
默认情况下,容器是隔离环境,我们直接访问宿主机的80端口,肯定访问不到容器中的nginx。
现在,将容器的80与宿主机的80关联起来,当我们访问宿主机的80端口时,就会被映射到容器的80,这样就能访问到nginx了:
在这里插入图片描述

2.2.3.案例-进入容器,修改文件

需求:进入Nginx容器,修改HTML文件内容,添加“传智教育欢迎您”
提示:进入容器要用到docker exec命令。

步骤

1)进入容器。进入我们刚刚创建的nginx容器的命令为:

docker exec -it mn bash

命令解读:

  • docker exec :进入容器内部,执行一个命令
  • -it : 给当前进入的容器创建一个标准输入、输出终端,允许我们与容器交互
  • mn :要进入的容器的名称
  • bash:进入容器后执行的命令,bash是一个linux终端交互命令

2)进入nginx的HTML所在目录 /usr/share/nginx/html

容器内部会模拟一个独立的Linux文件系统,看起来如同一个linux服务器一样:
在这里插入图片描述
nginx的环境、配置、运行文件全部都在这个文件系统中,包括我们要修改的html文件。
查看DockerHub网站中的nginx页面,可以知道nginx的html目录位置在/usr/share/nginx/html
我们执行命令,进入该目录:

cd /usr/share/nginx/html

查看目录下文件:
在这里插入图片描述
3)修改index.html的内容
容器内没有vi命令,无法直接修改,我们用下面的命令来修改:

sed -i -e 's#Welcome to nginx#传智教育欢迎您#g' -e 's#<head>#<head><meta charset="utf-8">#g' index.html

在浏览器访问自己的虚拟机地址,例如我的是:http://192.168.150.101,即可看到结果:
在这里插入图片描述

2.2.4.小结

docker run命令的常见参数有哪些?

  • –name:指定容器名称
  • -p:指定端口映射
  • -d:让容器后台运行

查看容器日志的命令:

  • docker logs
  • 添加 -f 参数可以持续查看日志

查看容器状态:

  • docker ps
  • docker ps -a 查看所有容器,包括已经停止的
  • 2.3.数据卷(容器数据管理)

在之前的nginx案例中,修改nginx的html页面时,需要进入nginx内部。并且因为没有编辑器,修改文件也很麻烦。
这就是因为容器与数据(容器内文件)耦合带来的后果。
在这里插入图片描述

2.3.1.什么是数据卷

**数据卷(volume)**是一个虚拟目录,指向宿主机文件系统中的某个目录。
在这里插入图片描述
一旦完成数据卷挂载,对容器的一切操作都会作用在数据卷对应的宿主机目录了。

这样,我们操作宿主机的/var/lib/docker/volumes/html目录,就等于操作容器内的/usr/share/nginx/html目录了

2.3.2.数据集操作命令

数据卷操作的基本语法如下:

docker volume [COMMAND]

docker volume命令是数据卷操作,根据命令后跟随的command来确定下一步的操作:

  • create 创建一个volume
  • inspect 显示一个或多个volume的信息
  • ls 列出所有的volume
  • prune 删除未使用的volume
  • rm 删除一个或多个指定的volume

2.3.3.创建和查看数据卷

需求:创建一个数据卷,并查看数据卷在宿主机的目录位置
① 创建数据卷

docker volume create html

② 查看所有数据

docker volume ls

结果:
在这里插入图片描述
③ 查看数据卷详细信息卷

docker volume inspect html

结果:
在这里插入图片描述
可以看到,我们创建的html这个数据卷关联的宿主机目录为/var/lib/docker/volumes/html/_data目录。

小结

数据卷的作用:

  • 将容器与数据分离,解耦合,方便操作容器内数据,保证数据安全

数据卷操作:

  • docker volume create:创建数据卷
  • docker volume ls:查看所有数据卷
  • docker volume inspect:查看数据卷详细信息,包括关联的宿主机目录位置
  • docker volume rm:删除指定数据卷
  • docker volume prune:删除所有未使用的数据卷