题意:有若干线段,问是否存在一条直线,所有线段投影到直线上时至少有一个公共点
分析:有一个很好的解题报告:二维平面上线段与直线位置关系的判定。首先原问题可以转换为是否存在一条直线与所有线段相交,然后可以离散化枚举通过枚举端点来枚举直线,再用叉积判断直线和线段是否相交。用到了叉积
/************************************************
* Author :Running_Time
* Created Time :2015/10/23 星期五 17:00:08
* File Name :POJ_3304.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e2 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-8;
struct Point { //点的定义
double x, y;
Point (double x=0, double y=0) : x (x), y (y) {}
};
typedef Point Vector; //向量的定义
Point read_point(void) { //点的读入
double x, y;
scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double polar_angle(Vector A) { //向量极角
return atan2 (A.y, A.x);
}
double dot(Vector A, Vector B) { //向量点积
return A.x * B.x + A.y * B.y;
}
double cross(Vector A, Vector B) { //向量叉积
return A.x * B.y - A.y * B.x;
}
int dcmp(double x) { //三态函数,减少精度问题
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
Vector operator + (Vector A, Vector B) { //向量加法
return Vector (A.x + B.x, A.y + B.y);
}
Vector operator - (Vector A, Vector B) { //向量减法
return Vector (A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p) { //向量乘以标量
return Vector (A.x * p, A.y * p);
}
Vector operator / (Vector A, double p) { //向量除以标量
return Vector (A.x / p, A.y / p);
}
bool operator < (const Point &a, const Point &b) { //点的坐标排序
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
bool operator == (const Point &a, const Point &b) { //判断同一个点
return dcmp (a.x - b.x) == 0 && dcmp (a.y - b.y) == 0;
}
double length(Vector A) { //向量长度,点积
return sqrt (dot (A, A));
}
double angle(Vector A, Vector B) { //向量转角,逆时针,点积
return acos (dot (A, B) / length (A) / length (B));
}
double area_triangle(Point a, Point b, Point c) { //三角形面积,叉积
return fabs (cross (b - a, c - a)) / 2.0;
}
Vector rotate(Vector A, double rad) { //向量旋转,逆时针
return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
}
Vector nomal(Vector A) { //向量的单位法向量
double len = length (A);
return Vector (-A.y / len, A.x / len);
}
Point point_inter(Point p, Vector V, Point q, Vector W) { //两直线交点,参数方程
Vector U = p - q;
double t = cross (W, U) / cross (V, W);
return p + V * t;
}
double dis_to_line(Point p, Point a, Point b) { //点到直线的距离,两点式
Vector V1 = b - a, V2 = p - a;
return fabs (cross (V1, V2)) / length (V1);
}
double dis_to_seg(Point p, Point a, Point b) { //点到线段的距离,两点式 if (a == b) return length (p - a);
Vector V1 = b - a, V2 = p - a, V3 = p - b;
if (dcmp (dot (V1, V2)) < 0) return length (V2);
else if (dcmp (dot (V1, V3)) > 0) return length (V3);
else return fabs (cross (V1, V2)) / length (V1);
}
Point point_proj(Point p, Point a, Point b) { //点在直线上的投影,两点式
Vector V = b - a;
return a + V * (dot (V, p - a) / dot (V, V));
}
bool inter(Point a1, Point a2, Point b1, Point b2) { //判断线段相交,两点式
double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
}
bool on_seg(Point p, Point a1, Point a2) { //判断点在线段上,两点式
return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
}
double area_poly(Point *p, int n) { //多边形面积
double ret = 0;
for (int i=1; i<n-1; ++i) {
ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
}
return ret / 2;
}
/*
点集凸包,输入点集会被修改
*/
vector<Point> convex_hull(vector<Point> &P) {
sort (P.begin (), P.end ());
P.erase (unique (P.begin (), P.end ()), P.end ()); //预处理,删除重复点
int n = P.size (), m = 0;
vector<Point> ret (n + 1);
for (int i=0; i<n; ++i) {
while (m > 1 && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--;
ret[m++] = P[i];
}
int k = m;
for (int i=n-2; i>=0; --i) {
while (m > k && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--;
ret[m++] = P[i];
}
if (n > 1) m--;
ret.resize (m);
return ret;
}
struct Line {
Point s, e;
Line () {}
Line (Point s, Point e) : s (s), e (e) {}
};
Line L[N];
int n; bool judge(Point a, Point b) {
if (a == b) return false;
for (int i=0; i<n; ++i) {
if (cross (a - L[i].s, b - L[i].s) * cross (a - L[i].e, b - L[i].e) > 0) return false;
}
return true;
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d", &n);
for (int i=0; i<n; ++i) {
L[i] = Line (read_point (), read_point ());
}
if (n == 1) {
puts ("Yes!"); continue;
}
bool flag = false;
for (int i=0; i<n && !flag; ++i) {
for (int j=i+1; j<n; ++j) {
if (judge (L[i].s, L[j].s) || judge (L[i].s, L[j].e)
|| judge (L[i].e, L[j].s) || judge (L[i].e, L[j].e)) {
flag = true; break;
}
}
}
if (flag) puts ("Yes!");
else puts ("No!");
} return 0;
}