python pandas模糊匹配 读取Excel后 获取指定指标的操作

时间:2021-08-14 00:40:45

1.首先读取Excel文件

python pandas模糊匹配 读取Excel后 获取指定指标的操作

数据代表了各个城市店铺的装修和配置费用,要统计出装修和配置项的总费用并进行加和计算;

2.pandas实现过程

import pandas as pd
#1.读取数据
df = pd.read_excel(r"./data/pfee.xlsx")
print(df)

python pandas模糊匹配 读取Excel后 获取指定指标的操作

cols = list(df.columns)
print(cols)

python pandas模糊匹配 读取Excel后 获取指定指标的操作

#2.获取含有装修 和 配置 字段的数据
zx_lists=[]
pz_lists=[]
for name in cols:
 if "装修" in name:
  zx_lists.append(name)
 elif "配置" in name:
  pz_lists.append(name)
print(zx_lists)
print(pz_lists)

python pandas模糊匹配 读取Excel后 获取指定指标的操作

#3.对装修和配置项费用进行求和计算
df["装修-求和"] =df[zx_lists].apply(lambda x:x.sum(),axis=1)
df["配置-求和"] = df[pz_lists].apply(lambda x:x.sum(),axis=1)
print(df)

python pandas模糊匹配 读取Excel后 获取指定指标的操作

补充:pandas 中dataframe 中的模糊匹配 与pyspark dataframe 中的模糊匹配

1.pandas dataframe

匹配一个很简单,批量匹配如下

df_obj[df_obj["title"].str.contains(r".*?n.*")] #使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次

pyspark dataframe 中模糊匹配有两种方式

2.spark dataframe api, filter rlike 联合使用

df1=df.filter("uri rlike 
 "com.tencent.tmgp.sgame|%E8%80%85%E8%8D%A3%E8%80%80_|android.ugc.live|
 %e7%88f%e8%a7%86%e9%a2%91|%E7%%8F%E8%A7%86%E9%A2%91"").groupBy("uri").
 count().sort("count", ascending=False)

注意点:

1.rlike 后面进行批量匹配用引号包裹即可

2.rlike 中要匹配特殊字符的话,不需要转义

3.rlike "\\bapple\\b" 虽然也可以匹配但是匹配数量不全,具体原因不明,欢迎讨论。

In [5]: df.filter("name rlike "%"").show()
+---+------+-----+
|age|height| name|
+---+------+-----+
| 4| 140|A%l%i|
| 6| 180| i%ce|
+---+------+-----+

3.spark sql

spark.sql("select uri from t where uri like "%com.tencent.tmgp.sgame%" or uri like "douyu"").show(5)

如果要批量匹配的话,就需要在后面继续添加uri like "%blabla%",就有点繁琐了。

对了这里需要提到原生sql 的批量匹配,regexp 就很方便了,跟rlike 有点相似

mysql> select count(*) from url_parse where uri regexp "android.ugc.live|com.tencent.tmgp.sgame";
+----------+
| count(*) |
+----------+
|  9768 |
+----------+
1 row in set (0.52 sec)

于是这里就可以将sql中regexp 应用到spark sql 中

In [9]: spark.sql("select * from t where name regexp "%l|t|_"").show()
+---+------+------+
|age|height| name|
+---+------+------+
| 1| 150|Al_ice|
| 4| 140| A%l%i|
+---+------+------+

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。

原文链接:https://blog.csdn.net/baidu_38409988/article/details/91968148