TensorFlow之结果可视化
通过matplotlib可视化,形象的看数据.
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #TensorFlow之添加层 #添加神经层函数(输入,输入大小,输出大小,激励函数) def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) #初始值不为0,所以+0.1 biases = tf.Variable(tf.zeros([1,out_size]) + 0.1) #没有被激活的值 Wx_plus_b = tf.matmul(inputs,Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data = np.linspace(-1,1,300)[:,np.newaxis] #噪点 noise = np.random.normal(0,0.05,x_data.shape) y_data = np.square(x_data) - 0.5 + noise #定义2个参数 xs = tf.placeholder(tf.float32,[None,1]) ys = tf.placeholder(tf.float32,[None,1]) #输入层 l1 = add_layer(xs,1,10,activation_function = tf.nn.relu) #输出层 prediction = add_layer(l1,10,1,activation_function = None) #损失函数 loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices = [1])) #学习率通常小于1 #以0.1的学习率,通过loss变小,每一次的优化 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(x_data,y_data) #show了以后不暂住,plt.show(block=false) plt.ion() plt.show() for i in range(1000): #training sess.run(train_step,feed_dict = {xs:x_data,ys:y_data}) if i % 50 == 0: #to see the step improvement #print(sess.run(loss,feed_dict={xs:x_data,ys:y_data})) try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction,feed_dict={xs:x_data}) lines = ax.plot(x_data,prediction_value,'r-',lw=5) plt.pause(0.1)
如图效果:
红线会随着训练,修改.