原文:pandas.pydata.org/docs/user_guide/duplicates.html
Index
对象不需要是唯一的;你可以有重复的行或列标签。这一点可能一开始会有点困惑。如果你熟悉 SQL,你会知道行标签类似于表上的主键,你绝不希望在 SQL 表中有重复项。但 pandas 的一个作用是在数据传输到某个下游系统之前清理混乱的真实世界数据。而真实世界的数据中有重复项,即使在应该是唯一的字段中也是如此。
本节描述了重复标签如何改变某些操作的行为,以及如何在操作过程中防止重复项的出现,或者在出现重复项时如何检测它们。
In [1]: import pandas as pd
In [2]: import numpy as np
重复标签的后果
一些 pandas 方法(例如Series.reindex()
)在存在重复项时根本无法工作。输出无法确定,因此 pandas 会引发异常。
In [3]: s1 = pd.Series([0, 1, 2], index=["a", "b", "b"])
In [4]: s1.reindex(["a", "b", "c"])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[4], line 1
----> 1 s1.reindex(["a", "b", "c"])
File ~/work/pandas/pandas/pandas/core/series.py:5153, in Series.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)
5136 @doc(
5137 NDFrame.reindex, # type: ignore[has-type]
5138 klass=_shared_doc_kwargs["klass"],
(...)
5151 tolerance=None,
5152 ) -> Series:
-> 5153 return super().reindex(
5154 index=index,
5155 method=method,
5156 copy=copy,
5157 level=level,
5158 fill_value=fill_value,
5159 limit=limit,
5160 tolerance=tolerance,
5161 )
File ~/work/pandas/pandas/pandas/core/generic.py:5610, in NDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)
5607 return self._reindex_multi(axes, copy, fill_value)
5609 # perform the reindex on the axes
-> 5610 return self._reindex_axes(
5611 axes, level, limit, tolerance, method, fill_value, copy
5612 ).__finalize__(self, method="reindex")
File ~/work/pandas/pandas/pandas/core/generic.py:5633, in NDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy)
5630 continue
5632 ax = self._get_axis(a)
-> 5633 new_index, indexer = ax.reindex(
5634 labels, level=level, limit=limit, tolerance=tolerance, method=method
5635 )
5637 axis = self._get_axis_number(a)
5638 obj = obj._reindex_with_indexers(
5639 {axis: [new_index, indexer]},
5640 fill_value=fill_value,
5641 copy=copy,
5642 allow_dups=False,
5643 )
File ~/work/pandas/pandas/pandas/core/indexes/base.py:4429, in Index.reindex(self, target, method, level, limit, tolerance)
4426 raise ValueError("cannot handle a non-unique multi-index!")
4427 elif not self.is_unique:
4428 # GH#42568
-> 4429 raise ValueError("cannot reindex on an axis with duplicate labels")
4430 else:
4431 indexer, _ = self.get_indexer_non_unique(target)
ValueError: cannot reindex on an axis with duplicate labels
其他方法,如索引,可能会产生非常令人惊讶的结果。通常使用标量进行索引会降低维度。使用标量切片DataFrame
将返回一个Series
。使用标量切片Series
将返回一个标量。但是对于重复项,情况并非如此。
In [5]: df1 = pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "A", "B"])
In [6]: df1
Out[6]:
A A B
0 0 1 2
1 3 4 5
我们的列中有重复项。如果我们切片'B'
,我们会得到一个Series
In [7]: df1["B"] # a series
Out[7]:
0 2
1 5
Name: B, dtype: int64
但是切片'A'
返回一个DataFrame
In [8]: df1["A"] # a DataFrame
Out[8]:
A A
0 0 1
1 3 4
这也适用于行标签
In [9]: df2 = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "a", "b"])
In [10]: df2
Out[10]:
A
a 0
a 1
b 2
In [11]: df2.loc["b", "A"] # a scalar
Out[11]: 2
In [12]: df2.loc["a", "A"] # a Series
Out[12]:
a 0
a 1
Name: A, dtype: int64
重复标签检测
您可以使用Index.is_unique
检查Index
(存储行或列标签)是否唯一:
In [13]: df2
Out[13]:
A
a 0
a 1
b 2
In [14]: df2.index.is_unique
Out[14]: False
In [15]: df2.columns.is_unique
Out[15]: True
注意
检查索引是否唯一对于大型数据集来说有点昂贵。pandas 会缓存此结果,因此在相同的索引上重新检查非常快。
Index.duplicated()
将返回一个布尔数组,指示标签是否重复。
In [16]: df2.index.duplicated()
Out[16]: array([False, True, False])
可以用作布尔过滤器来删除重复行。
In [17]: df2.loc[~df2.index.duplicated(), :]
Out[17]:
A
a 0
b 2
如果您需要额外的逻辑来处理重复标签,而不仅仅是删除重复项,则在索引上使用groupby()
是一个常见的技巧。例如,我们将通过取具有相同标签的所有行的平均值来解决重复项。
In [18]: df2.groupby(level=0).mean()
Out[18]:
A
a 0.5
b 2.0
禁止重复标签
版本 1.2.0 中的新功能。
如上所述,在读取原始数据时处理重复项是一个重要的功能。也就是说,您可能希望避免在数据处理管道中引入重复项(从方法如pandas.concat()
、rename()
等)。Series
和DataFrame
通过调用.set_flags(allows_duplicate_labels=False)
禁止重复标签(默认情况下允许)。如果存在重复标签,将引发异常。
In [19]: pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
---------------------------------------------------------------------------
DuplicateLabelError Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
File ~/work/pandas/pandas/pandas/core/generic.py:508, in NDFrame.set_flags(self, copy, allows_duplicate_labels)
506 df = self.copy(deep=copy and not using_copy_on_write())
507 if allows_duplicate_labels is not None:
--> 508 df.flags["allows_duplicate_labels"] = allows_duplicate_labels
509 return df
File ~/work/pandas/pandas/pandas/core/flags.py:109, in Flags.__setitem__(self, key, value)
107 if key not in self._keys:
108 raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
--> 109 setattr(self, key, value)
File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
94 if not value:
95 for ax in obj.axes:
---> 96 ax._maybe_check_unique()
98 self._allows_duplicate_labels = value
File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
712 duplicates = self._format_duplicate_message()
713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)
DuplicateLabelError: Index has duplicates.
positions
label
b [1, 2]
这适用于DataFrame
的行和列标签
In [20]: pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "B", "C"],).set_flags(
....: allows_duplicate_labels=False
....: )
....:
Out[20]:
A B C
0 0 1 2
1 3 4 5
可以使用allows_duplicate_labels
来检查或设置此属性,该属性指示该对象是否可以具有重复标签。
In [21]: df = pd.DataFrame({"A": [0, 1, 2, 3]}, index=["x", "y", "X", "Y"]).set_flags(
....: allows_duplicate_labels=False
....: )
....:
In [22]: df
Out[22]:
A
x 0
y 1
X 2
Y 3
In [23]: df.flags.allows_duplicate_labels
Out[23]: False
DataFrame.set_flags()
可用于返回一个新的DataFrame
,其中包含allows_duplicate_labels
等属性设置为某个值
In [24]: df2 = df.set_flags(allows_duplicate_labels=True)
In [25]: df2.flags.allows_duplicate_labels
Out[25]: True
返回的新DataFrame
是对旧DataFrame
上相同数据的视图。或者该属性可以直接设置在同一对象上。
In [26]: df2.flags.allows_duplicate_labels = False
In [27]: df2.flags.allows_duplicate_labels
Out[27]: False
在处理原始杂乱数据时,您可能首先会读取杂乱数据(其中可能存在重复标签),然后去重,并且在之后禁止重复,以确保您的数据流水线不会引入重复。
>>> raw = pd.read_csv("...")
>>> deduplicated = raw.groupby(level=0).first() # remove duplicates
>>> deduplicated.flags.allows_duplicate_labels = False # disallow going forward
在具有重复标签的Series
或DataFrame
上设置allows_duplicate_labels=False
,或执行引入重复标签的操作,会导致引发errors.DuplicateLabelError
。
In [28]: df.rename(str.upper)
---------------------------------------------------------------------------
DuplicateLabelError Traceback (most recent call last)
Cell In[28], line 1
----> 1 df.rename(str.upper)
File ~/work/pandas/pandas/pandas/core/frame.py:5767, in DataFrame.rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
5636 def rename(
5637 self,
5638 mapper: Renamer | None = None,
(...)
5646 errors: IgnoreRaise = "ignore",
5647 ) -> DataFrame | None:
5648 """
5649 Rename columns or index labels.
5650
(...)
5765 4 3 6
5766 """
-> 5767 return super()._rename(
5768 mapper=mapper,
5769 index=index,
5770 columns=columns,
5771 axis=axis,
5772 copy=copy,
5773 inplace=inplace,
5774 level=level,
5775 errors=errors,
5776 )
File ~/work/pandas/pandas/pandas/core/generic.py:1140, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
1138 return None
1139 else:
-> 1140 return result.__finalize__(self, method="rename")
File ~/work/pandas/pandas/pandas/core/generic.py:6262, in NDFrame.__finalize__(self, other, method, **kwargs)
6255 if other.attrs:
6256 # We want attrs propagation to have minimal performance
6257 # impact if attrs are not used; i.e. attrs is an empty dict.
6258 # One could make the deepcopy unconditionally, but a deepcopy
6259 # of an empty dict is 50x more expensive than the empty check.
6260 self.attrs = deepcopy(other.attrs)
-> 6262 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
6263 # For subclasses using _metadata.
6264 for name in set(self._metadata) & set(other._metadata):
File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
94 if not value:
95 for ax in obj.axes:
---> 96 ax._maybe_check_unique()
98 self._allows_duplicate_labels = value
File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
712 duplicates = self._format_duplicate_message()
713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)
DuplicateLabelError: Index has duplicates.
positions
label
X [0, 2]
Y [1, 3]
此错误消息包含重复的标签,以及Series
或DataFrame
中所有重复项(包括“原始”)的数字位置
重复标签传播
一般来说,不允许重复是“粘性的”。它会通过操作保留下来。
In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)
In [30]: s1
Out[30]:
a 0
b 0
dtype: int64
In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})
File ~/work/pandas/pandas/pandas/core/series.py:5090, in Series.rename(self, index, axis, copy, inplace, level, errors)
5083 axis = self._get_axis_number(axis)
5085 if callable(index) or is_dict_like(index):
5086 # error: Argument 1 to "_rename" of "NDFrame" has incompatible
5087 # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
5088 # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
5089 # Hashable], Callable[[Any], Hashable], None]"
-> 5090 return super()._rename(
5091 index, # type: ignore[arg-type]
5092 copy=copy,
5093 inplace=inplace,
5094 level=level,
5095 errors=errors,
5096 )
5097 else:
5098 return self._set_name(index, inplace=inplace, deep=copy)
File ~/work/pandas/pandas/pandas/core/generic.py:1140, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
1138 return None
1139 else:
-> 1140 return result.__finalize__(self, method="rename")
File ~/work/pandas/pandas/pandas/core/generic.py:6262, in NDFrame.__finalize__(self, other, method, **kwargs)
6255 if other.attrs:
6256 # We want attrs propagation to have minimal performance
6257 # impact if attrs are not used; i.e. attrs is an empty dict.
6258 # One could make the deepcopy unconditionally, but a deepcopy
6259 # of an empty dict is 50x more expensive than the empty check.
6260 self.attrs = deepcopy(other.attrs)
-> 6262 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
6263 # For subclasses using _metadata.
6264 for name in set(self._metadata) & set(other._metadata):
File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
94 if not value:
95 for ax in obj.axes:
---> 96 ax._maybe_check_unique()
98 self._allows_duplicate_labels = value
File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
712 duplicates = self._format_duplicate_message()
713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)
DuplicateLabelError: Index has duplicates.
positions
label
b [0, 1]
警告
这是一个实验性功能。目前,许多方法未能传播allows_duplicate_labels
的值。未来版本预计每个接受或返回一个或多个 DataFrame 或 Series 对象的方法都将传播allows_duplicate_labels
。
重复标签的后果
一些 pandas 方法(例如Series.reindex()
)在存在重复时无法正常工作。输出结果无法确定,因此 pandas 会报错。
In [3]: s1 = pd.Series([0, 1, 2], index=["a", "b", "b"])
In [4]: s1.reindex(["a", "b", "c"])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[4], line 1
----> 1 s1.reindex(["a", "b", "c"])
File ~/work/pandas/pandas/pandas/core/series.py:5153, in Series.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)
5136 @doc(
5137 NDFrame.reindex, # type: ignore[has-type]
5138 klass=_shared_doc_kwargs["klass"],
(...)
5151 tolerance=None,
5152 ) -> Series:
-> 5153 return super().reindex(
5154 index=index,
5155 method=method,
5156 copy=copy,
5157 level=level,
5158 fill_value=fill_value,
5159 limit=limit,
5160 tolerance=tolerance,
5161 )
File ~/work/pandas/pandas/pandas/core/generic.py:5610, in NDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)
5607 return self._reindex_multi(axes, copy, fill_value)
5609 # perform the reindex on the axes
-> 5610 return self._reindex_axes(
5611 axes, level, limit, tolerance, method, fill_value, copy
5612 ).__finalize__(self, method="reindex")
File ~/work/pandas/pandas/pandas/core/generic.py:5633, in NDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy)
5630 continue
5632 ax = self._get_axis(a)
-> 5633 new_index, indexer = ax.reindex(
5634 labels, level=level, limit=limit, tolerance=tolerance, method=method
5635 )
5637 axis = self._get_axis_number(a)
5638 obj = obj._reindex_with_indexers(
5639 {axis: [new_index, indexer]},
5640 fill_value=fill_value,
5641 copy=copy,
5642 allow_dups=False,
5643 )
File ~/work/pandas/pandas/pandas/core/indexes/base.py:4429, in Index.reindex(self, target, method, level, limit, tolerance)
4426 raise ValueError("cannot handle a non-unique multi-index!")
4427 elif not self.is_unique:
4428 # GH#42568
-> 4429 raise ValueError("cannot reindex on an axis with duplicate labels")
4430 else:
4431 indexer, _ = self.get_indexer_non_unique(target)
ValueError: cannot reindex on an axis with duplicate labels
其他方法,如索引,可能会产生非常奇怪的结果。通常使用标量进行索引将减少维度。使用标量对DataFrame
进行切片将返回一个Series
。使用标量对Series
进行切片将返回一个标量。但是对于重复项,情况并非如此。
In [5]: df1 = pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "A", "B"])
In [6]: df1
Out[6]:
A A B
0 0 1 2
1 3 4 5
我们在列中有重复。如果我们切片'B'
,我们会得到一个Series
In [7]: df1["B"] # a series
Out[7]:
0 2
1 5
Name: B, dtype: int64
但是切片'A'
会返回一个DataFrame
In [8]: df1["A"] # a DataFrame
Out[8]:
A A
0 0 1
1 3 4
这也适用于行标签
In [9]: df2 = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "a", "b"])
In [10]: df2
Out[10]:
A
a 0
a 1
b 2
In [11]: df2.loc["b", "A"] # a scalar
Out[11]: 2
In [12]: df2.loc["a", "A"] # a Series
Out[12]:
a 0
a 1
Name: A, dtype: int64
重复标签检测
您可以使用Index.is_unique
检查Index
(存储行或列标签)是否唯一:
In [13]: df2
Out[13]:
A
a 0
a 1
b 2
In [14]: df2.index.is_unique
Out[14]: False
In [15]: df2.columns.is_unique
Out[15]: True
注意
检查索引是否唯一对于大型数据集来说是比较昂贵的。pandas 会缓存此结果,因此在相同的索引上重新检查非常快。
Index.duplicated()
会返回一个布尔型 ndarray,指示标签是否重复。
In [16]: df2.index.duplicated()
Out[16]: array([False, True, False])
可以将其用作布尔过滤器以删除重复行。
In [17]: df2.loc[~df2.index.duplicated(), :]
Out[17]:
A
a 0
b 2
如果您需要额外的逻辑来处理重复标签,而不仅仅是删除重复项,则在索引上使用groupby()
是一种常见的技巧。例如,我们将通过取具有相同标签的所有行的平均值来解决重复项。
In [18]: df2.groupby(level=0).mean()
Out[18]:
A
a 0.5
b 2.0
不允许重复标签
新版本 1.2.0 中新增。
如上所述,在读取原始数据时处理重复是一个重要功能。也就是说,您可能希望避免在数据处理流水线中引入重复(从方法如pandas.concat()
,rename()
等)。通过调用.set_flags(allows_duplicate_labels=False)
,Series
和DataFrame
都不允许重复标签(默认允许)。如果存在重复标签,将引发异常。
In [19]: pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
---------------------------------------------------------------------------
DuplicateLabelError Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
File ~/work/pandas/pandas/pandas/core/generic.py:508, in NDFrame.set_flags(self, copy, allows_duplicate_labels)
506 df = self.copy(deep=copy and not using_copy_on_write())
507 if allows_duplicate_labels is not None:
--> 508 df.flags["allows_duplicate_labels"] = allows_duplicate_labels
509 return df
File ~/work/pandas/pandas/pandas/core/flags.py:109, in Flags.__setitem__(self, key, value)
107 if key not in self._keys:
108 raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
--> 109 setattr(self, key, value)
File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
94 if not value:
95 for ax in obj.axes:
---> 96 ax._maybe_check_unique()
98 self._allows_duplicate_labels = value
File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
712 duplicates = self._format_duplicate_message()
713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)
DuplicateLabelError: Index has duplicates.
positions
label
b [1, 2]
这适用于DataFrame
的行标签和列标签。
In [20]: pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "B", "C"],).set_flags(
....: allows_duplicate_labels=False
....: )
....:
Out[20]:
A B C
0 0 1 2
1 3 4 5
可以使用allows_duplicate_labels
来检查或设置此属性,该属性指示该对象是否可以具有重复标签。
In [21]: df = pd.DataFrame({"A": [0, 1, 2, 3]}, index=["x", "y", "X", "Y"]).set_flags(
....: allows_duplicate_labels=False
....: )
....:
In [22]: df
Out[22]:
A
x 0
y 1
X 2
Y 3
In [23]: df.flags.allows_duplicate_labels
Out[23]: False
DataFrame.set_flags()
可用于返回一个新的DataFrame
,其中属性如allows_duplicate_labels
设置为某个值。
In [24]: df2 = df.set_flags(allows_duplicate_labels=True)
In [25]: df2.flags.allows_duplicate_labels
Out[25]: True
返回的新DataFrame
是与旧DataFrame
相同数据的视图。或者该属性可以直接设置在同一对象上。
In [26]: df2.flags.allows_duplicate_labels = False
In [27]: df2.flags.allows_duplicate_labels
Out[27]: False
在处理原始混乱数据时,您可能首先读取混乱数据(可能具有重复标签),去重,然后禁止未来出现重复,以确保您的数据流水线不会引入重复。
>>> raw = pd.read_csv("...")
>>> deduplicated = raw.groupby(level=0).first() # remove duplicates
>>> deduplicated.flags.allows_duplicate_labels = False # disallow going forward
设置allows_duplicate_labels=False
在具有重复标签的Series
或DataFrame
上,或者在Series
或DataFrame
上执行引入重复标签的操作,而该Series
或DataFrame
不允许重复标签时,将引发errors.DuplicateLabelError
。
In [28]: df.rename(str.upper)
---------------------------------------------------------------------------
DuplicateLabelError Traceback (most recent call last)
Cell In[28], line 1
----> 1 df.rename(str.upper)
File ~/work/pandas/pandas/pandas/core/frame.py:5767, in DataFrame.rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
5636 def rename(
5637 self,
5638 mapper: Renamer | None = None,
(...)
5646 errors: IgnoreRaise = "ignore",
5647 ) -> DataFrame | None:
5648 """
5649 Rename columns or index labels.
5650
(...)
5765 4 3 6
5766 """
-> 5767 return super()._rename(
5768 mapper=mapper,
5769 index=index,
5770 columns=columns,
5771 axis=axis,
5772 copy=copy,
5773 inplace=inplace,
5774 level=level,
5775 errors=errors,
5776 )
File ~/work/pandas/pandas/pandas/core/generic.py:1140, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
1138 return None
1139 else:
-> 1140 return result.__finalize__(self, method="rename")
File ~/work/pandas/pandas/pandas/core/generic.py:6262, in NDFrame.__finalize__(self, other, method, **kwargs)
6255 if other.attrs:
6256 # We want attrs propagation to have minimal performance
6257 # impact if attrs are not used; i.e. attrs is an empty dict.
6258 # One could make the deepcopy unconditionally, but a deepcopy
6259 # of an empty dict is 50x more expensive than the empty check.
6260 self.attrs = deepcopy(other.attrs)
-> 6262 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
6263 # For subclasses using _metadata.
6264 for name in set(self._metadata) & set(other._metadata):
File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
94 if not value:
95 for ax in obj.axes:
---> 96 ax._maybe_check_unique()
98 self._allows_duplicate_labels = value
File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
712 duplicates = self._format_duplicate_message()
713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)
DuplicateLabelError: Index has duplicates.
positions
label
X [0, 2]
Y [1, 3]
此错误消息包含重复的标签以及所有重复项(包括“原始”)在Series
或DataFrame
中的数值位置。
重复标签传播
一般来说,禁止重复是“粘性”的。它会通过操作保留下来。
In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)
In [30]: s1
Out[30]:
a 0
b 0
dtype: int64
In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})
File ~/work/pandas/pandas/pandas/core/series.py:5090, in Series.rename(self, index, axis, copy, inplace, level, errors)
5083 axis = self._get_axis_number(axis)
5085 if callable(index) or is_dict_like(index):
5086 # error: Argument 1 to "_rename" of "NDFrame" has incompatible
5087 # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
5088 # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
5089 # Hashable], Callable[[Any], Hashable], None]"
-> 5090 return super()._rename(
5091 index, # type: ignore[arg-type]
5092 copy=copy,
5093 inplace=inplace,
5094 level=level,
5095 errors=errors,
5096 )
5097 else:
5098 return self._set_name(index, inplace=inplace, deep=copy)
File ~/work/pandas/pandas/pandas/core/generic.py:1140, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
1138 return None
1139 else:
-> 1140 return result.__finalize__(self, method="rename")
File ~/work/pandas/pandas/pandas/core/generic.py:6262, in NDFrame.__finalize__(self, other, method, **kwargs)
6255 if other.attrs:
6256 # We want attrs propagation to have minimal performance
6257 # impact if attrs are not used; i.e. attrs is an empty dict.
6258 # One could make the deepcopy unconditionally, but a deepcopy
6259 # of an empty dict is 50x more expensive than the empty check.
6260 self.attrs = deepcopy(other.attrs)
-> 6262 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
6263 # For subclasses using _metadata.
6264 for name in set(self._metadata) & set(other._metadata):
File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
94 if not value:
95 for ax in obj.axes:
---> 96 ax._maybe_check_unique()
98 self._allows_duplicate_labels = value
File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
712 duplicates = self._format_duplicate_message()
713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)
DuplicateLabelError: Index has duplicates.
positions
label
b [0, 1]
警告
这是一个实验性功能。目前,许多方法未能传播allows_duplicate_labels
值。在未来版本中,预计每个接受或返回一个或多个 DataFrame 或 Series 对象的方法将传播allows_duplicate_labels
。
重复标签传播
一般来说,禁止重复是“粘性”的。它会通过操作保留下来。
In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)
In [30]: s1
Out[30]:
a 0
b 0
dtype: int64
In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})
File ~/work/pandas/pandas/pandas/core/series.py:5090, in Series.rename(self, index, axis, copy, inplace, level, errors)
5083 axis = self._get_axis_number(axis)
5085 if callable(index) or is_dict_like(index):
5086 # error: Argument 1 to "_rename" of "NDFrame" has incompatible
5087 # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
5088 # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
5089 # Hashable], Callable[[Any], Hashable], None]"
-> 5090 return super()._rename(
5091 index, # type: ignore[arg-type]
5092 copy=copy,
5093 inplace=inplace,
5094 level=level,
5095 errors=errors,
5096 )
5097 else:
5098 return self._set_name(index, inplace=inplace, deep=copy)
File ~/work/pandas/pandas/pandas/core/generic.py:1140, in NDFrame._rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
1138 return None
1139 else:
-> 1140 return result.__finalize__(self, method="rename")
File ~/work/pandas/pandas/pandas/core/generic.py:6262, in NDFrame.__finalize__(self, other, method, **kwargs)
6255 if other.attrs:
6256 # We want attrs propagation to have minimal performance
6257 # impact if attrs are not used; i.e. attrs is an empty dict.
6258 # One could make the deepcopy unconditionally, but a deepcopy
6259 # of an empty dict is 50x more expensive than the empty check.
6260 self.attrs = deepcopy(other.attrs)
-> 6262 self.flags.allows_duplicate_labels = other.flags.allows_duplicate_labels
6263 # For subclasses using _metadata.
6264 for name in set(self._metadata) & set(other._metadata):
File ~/work/pandas/pandas/pandas/core/flags.py:96, in Flags.allows_duplicate_labels(self, value)
94 if not value:
95 for ax in obj.axes:
---> 96 ax._maybe_check_unique()
98 self._allows_duplicate_labels = value
File ~/work/pandas/pandas/pandas/core/indexes/base.py:715, in Index._maybe_check_unique(self)
712 duplicates = self._format_duplicate_message()
713 msg += f"\n{duplicates}"
--> 715 raise DuplicateLabelError(msg)
DuplicateLabelError: Index has duplicates.
positions
label
b [0, 1]
警告
这是一个实验性功能。目前,许多方法未能传播allows_duplicate_labels
值。在未来版本中,预计每个接受或返回一个或多个 DataFrame 或 Series 对象的方法将传播allows_duplicate_labels
。