【原】biginteger。大数乘法。大数运算。“无限大数字”乘法。大数乘法两种方法对比

时间:2022-06-08 00:58:42


最近在看笔试题,得知大数运算是个经常考的题目。所以有兴趣试了试。

一开始按照笔算方法自己写了个,但是时间复杂度是o(n3)。

参考了网上的算法之后,修改了自己的算法,时间复杂度变成o(n2)。

下面的测试结果中,两个2000位的数字(阿拉伯数字的位数)相乘,耗时90多毫秒。

200位,1毫秒。可以看到,复杂度的确是N的平方级别。

自己写的笨办法,每次累加之后都要判断是否有进位。但是安全。

网上有个高效的算法,使用int存储临时结果,不用每次累加后都判断一次进位。等

所有的累加都完成之后再判断,所以时间复杂度降低了一个数量级。

但是这样也有个坏处,就是int早晚有溢出的时候,当整数的位数足够多,

也就是达到了2的29、30、31、32次方位(当然这种情况基本没可能发生),这种方法的运算结果就是错误的了。

 

 下面是算法对应的函数。

char* BigIntMultiply ( const char * const a, const char * const b , char* const lresult)
{
int i,j;
int la = strlen(a);
int lb = strlen(b);
int rlen = la+lb;
int* r = (int*)calloc( rlen, sizeof(int) );

for(i = 0;i < lb; i++)
for(j = 0; j < la; j++)
r[rlen - 1 - i - j] += (b[lb - i - 1] - '0') * (a[la - j - 1] - '0');

//then is there carry on current number
for(j = rlen - 1; j >= 1; j--)
if(r[j] > 9)
{
r[j-1] += r[j] / 10;
r[j] %= 10;
}
//find first none_zero_index
for(i = 0; 0 == r[i]; i++){}

//mem cpy
for(j=0; i< rlen; i++,j++)
lresult[j] = r[i]+'0';
lresult[j]='\0';

free(r);
return lresult;
}


 

 

 

下面的代码在Visual Studio 2008里面编译运行,没有问题。 Linux上没有 SYSTEMTIME,

没有atoi,itoa,GetLocalTime。所以要在Linux运行,得相应的修改一下。

#include <iostream>
#include <assert.h>
#include <stdio.h>
#include <time.h>
#include <windows.h>
#include <malloc.h>


using namespace std;

const int MAX = 2001;

char num1[MAX];
char num2[MAX];
char result[2*MAX];


void SafeGetNumFromStr ( char* num, char* str);
char* BigIntMultiply ( const char * const a, const char * const b , char* const lresult);
void multiply( const char *a, const char *b);

int main(int argc, char *argv[])
{
//test speed
cout<<"\n\nspeed test... Number of digits is : "<<MAX-1<<"\n";
int i;
const int TEST_TIME = 20;
srand((unsigned)time(NULL));
for(i = 0;i<MAX;i++)
{
num1[i] = 0;
num2[i] = 0;
}
//create data with random
for(i = 0; i< MAX - 1; i++)
{
num1[i] = rand()%10 + '0';
num2[i] = rand()%10 + '0';
}

SYSTEMTIME wtm;
GetLocalTime(&wtm);
long long time_start = wtm.wMilliseconds + wtm.wSecond * 1000;
cout<<num1<<endl;
cout<<"*\n";
cout<<num2<<endl;
for(i = 0; i<TEST_TIME; i++)
{
BigIntMultiply(num1,num2,result);
}
GetLocalTime(&wtm);
cout<<"Result is:\n";
cout<<result<<endl;
double tmv = (double)(wtm.wMilliseconds + wtm.wSecond * 1000 - time_start);
cout<<"Test Over. "<<TEST_TIME<<" loops use time: "<<tmv<<" ms\n";
cout<<" Each One Time Use: "<<tmv/(double)TEST_TIME<<" ms\n\n\n";



//test validation
cout<<"Validation work...\n";
long long testNum1;
long long testNum2;
int testI;
for(testNum1 = 0;testNum1<1000000000000000;testNum1 = (testNum1+1)*181+1)
for(testI= 0;testI<200; testI++)
{
char a[2*MAX];
char b[2*MAX];
testNum2 = (testNum1+testI)<0?0:testNum1+testI;
for(i = 0;i<MAX;i++)
{
num1[i] = 0;
num2[i] = 0;
}
itoa(testNum1,a,10);
itoa(testNum2,b,10);
SafeGetNumFromStr(num1,a);
SafeGetNumFromStr(num2,b);
BigIntMultiply(num1,num2,result);

if(8 == testNum2%10)
if(testNum1*testNum2 == atoi(result))
cout<<testNum1<<" * "<<testNum2<<" == "<<testNum1*testNum2<<" Correct!\n";
else
cout<<testNum1<<" * "<<testNum2<<" Result:"<<result<<"\n";
}




//free test
cout<<"Now ..... Free Test!\n";

while(1)
{
char a[2*MAX];
char b[2*MAX];
cout<<"\n\ninput long integer for A"<<endl;
cin>>a;
cout<<"input long integer for B"<<endl;
cin>>b;

//get data
SafeGetNumFromStr(num1,a);
SafeGetNumFromStr(num2,b);
cout<<endl<<endl;
cout<<num1;
cout<<" * ";
cout<<num2;
cout<<endl;
BigIntMultiply(num1,num2,result);
cout<<"Result is:"<<endl;
cout<<result;
}

system("pause");
return 0;
}



void SafeGetNumFromStr( char* num, char* str)
{
memset(num,0,sizeof(num[0])*MAX);
int i;
int index = 0;
for(i=0;i<2*MAX && index < MAX;i++)
{
if(str[i] <= '9' && str[i] >='0')
num[index++] = str[i];
if('\0'==str[i])
break;
}
assert( 0 != index );
}



char* BigIntMultiply ( const char * const a, const char * const b , char* const lresult)
{
int i,j;
int la = strlen(a);
int lb = strlen(b);
int rlen = la+lb;
int* r = (int*)calloc( rlen, sizeof(int) );

for(i = 0;i < lb; i++)
for(j = 0; j < la; j++)
r[rlen - 1 - i - j] += (b[lb - i - 1] - '0') * (a[la - j - 1] - '0');

//then is there carry on current number
for(j = rlen - 1; j >= 1; j--)
if(r[j] > 9)
{
r[j-1] += r[j] / 10;
r[j] %= 10;
}
//find first none_zero_index
for(i = 0; 0 == r[i]; i++){}

//mem cpy
for(j=0; i< rlen; i++,j++)
lresult[j] = r[i]+'0';
lresult[j]='\0';

free(r);
return lresult;
}

 

 


 【原】biginteger。大数乘法。大数运算。“无限大数字”乘法。大数乘法两种方法对比

 

【原】biginteger。大数乘法。大数运算。“无限大数字”乘法。大数乘法两种方法对比

 

【原】biginteger。大数乘法。大数运算。“无限大数字”乘法。大数乘法两种方法对比