转载自:http://www.cnblogs.com/liuling/p/2013-7-24-01.html
另可参考:http://gengning938.blog.163.com/blog/static/128225381201141121326346/
排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。
内排序有可以分为以下几类:
(1)、插入排序:直接插入排序、二分法插入排序、希尔排序。
(2)、选择排序:简单选择排序、堆排序。
(3)、交换排序:冒泡排序、快速排序。
(4)、归并排序
(5)、基数排序
一、插入排序
①直接插入排序(从后向前找到合适位置后插入)
1、基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置(从后向前找到合适位置后),直到全部插入排序完为止。
2、实例
3、java实现
package com.sort; public class 直接插入排序 { public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//直接插入排序
for (int i = 1; i < a.length; i++) {
//待插入元素
int temp = a[i];
int j;
/*for (j = i-1; j>=0 && a[j]>temp; j--) {
//将大于temp的往后移动一位
a[j+1] = a[j];
}*/
for (j = i-1; j>=0; j--) {
//将大于temp的往后移动一位
if(a[j]>temp){
a[j+1] = a[j];
}else{
break;
}
}
a[j+1] = temp;
}
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
} }
4、分析
直接插入排序是稳定的排序。关于各种算法的稳定性分析可以参考http://www.cnblogs.com/Braveliu/archive/2013/01/15/2861201.html
文件初态不同时,直接插入排序所耗费的时间有很大差异。若文件初态为正序,则每个待插入的记录只需要比较一次就能够找到合适的位置插入,故算法的时间复杂度为O(n),这时最好的情况。若初态为反序,则第i个待插入记录需要比较i+1次才能找到合适位置插入,故时间复杂度为O(n2),这时最坏的情况。
直接插入排序的平均时间复杂度为O(n2)。
②二分法插入排序(按二分法找到合适位置插入)
1、基本思想:二分法插入排序的思想和直接插入一样,只是找合适的插入位置的方式不同,这里是按二分法找到合适的位置,可以减少比较的次数。
2、实例
3、java实现
package com.sort; public class 二分插入排序 {
public static void main(String[] args) {
int[] a={49,38,65,97,176,213,227,49,78,34,12,164,11,18,1};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//二分插入排序
sort(a);
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
} private static void sort(int[] a) {
for (int i = 0; i < a.length; i++) {
int temp = a[i];
int left = 0;
int right = i-1;
int mid = 0;
while(left<=right){
mid = (left+right)/2;
if(temp<a[mid]){
right = mid-1;
}else{
left = mid+1;
}
}
for (int j = i-1; j >= left; j--) {
a[j+1] = a[j];
}
if(left != i){
a[left] = temp;
}
}
}
}
4、分析
当然,二分法插入排序也是稳定的。
二分插入排序的比较次数与待排序记录的初始状态无关,仅依赖于记录的个数。当n较大时,比直接插入排序的最大比较次数少得多。但大于直接插入排序的最小比较次数。算法的移动次数与直接插入排序算法的相同,最坏的情况为n2/2,最好的情况为n,平均移动次数为O(n2)。
③希尔排序
1、基本思想:先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。该方法实质上是一种分组插入方法。
2、实例
3、java实现
package com.sort; //不稳定
public class 希尔排序 { public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//希尔排序
int d = a.length;
while(true){
d = d / 2;
for(int x=0;x<d;x++){
for(int i=x+d;i<a.length;i=i+d){
int temp = a[i];
int j;
for(j=i-d;j>=0&&a[j]>temp;j=j-d){
a[j+d] = a[j];
}
a[j+d] = temp;
}
}
if(d == 1){
break;
}
}
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
} }
4、分析
我们知道一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。
希尔排序的时间性能优于直接插入排序,原因如下:
package com.sort; //不稳定
public class 简单的选择排序 { public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//简单的选择排序
for (int i = 0; i < a.length; i++) {
int min = a[i];
int n=i; //最小数的索引
for(int j=i+1;j<a.length;j++){
if(a[j]<min){ //找出最小的数
min = a[j];
n = j;
}
}
a[n] = a[i];
a[i] = min; }
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
} }
4、分析
简单选择排序是不稳定的排序。
时间复杂度:T(n)=O(n2)。
②堆排序
1、基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
2、实例
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
3、java实现
package com.sort;
//不稳定
import java.util.Arrays; public class HeapSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i<arrayLength-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex<lastIndex){
//若果右子节点的值较大
if(data[biggerIndex]<data[biggerIndex+1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
}
4、分析
堆排序也是一种不稳定的排序算法。
堆排序优于简单选择排序的原因:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
堆排序的最坏时间复杂度为O(nlogn)。堆序的平均性能较接近于最坏性能。由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
三、交换排序
①冒泡排序
1、基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
2、实例
3、java实现
package com.sort; //稳定
public class 冒泡排序 {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//冒泡排序
for (int i = 0; i < a.length; i++) {
for(int j = 0; j<a.length-i-1; j++){
//这里-i主要是每遍历一次都把最大的i个数沉到最底下去了,没有必要再替换了
if(a[j]>a[j+1]){
int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;
}
}
}
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
}
4、分析
冒泡排序是一种稳定的排序方法。
package com.sort; //不稳定
public class 快速排序 {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//快速排序
quick(a);
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
} private static void quick(int[] a) {
if(a.length>0){
quickSort(a,0,a.length-1);
}
} private static void quickSort(int[] a, int low, int high) {
if(low<high){ //如果不加这个判断递归会无法退出导致堆栈溢出异常
int middle = getMiddle(a,low,high);
quickSort(a, 0, middle-1);
quickSort(a, middle+1, high);
}
} private static int getMiddle(int[] a, int low, int high) {
int temp = a[low];//基准元素
while(low<high){
//找到比基准元素小的元素位置
while(low<high && a[high]>=temp){
high--;
}
a[low] = a[high];
while(low<high && a[low]<=temp){
low++;
}
a[high] = a[low];
}
a[low] = temp;
return low;
}
}
4、分析
快速排序是不稳定的排序。
快速排序的时间复杂度为O(nlogn)。
当n较大时使用快排比较好,当序列基本有序时用快排反而不好。
四、归并排序
1、基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
2、实例
3、java实现
package com.sort; //不稳定
public class 快速排序 {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//快速排序
quick(a);
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
} private static void quick(int[] a) {
if(a.length>0){
quickSort(a,0,a.length-1);
}
} private static void quickSort(int[] a, int low, int high) {
if(low<high){ //如果不加这个判断递归会无法退出导致堆栈溢出异常
int middle = getMiddle(a,low,high);
quickSort(a, 0, middle-1);
quickSort(a, middle+1, high);
}
} private static int getMiddle(int[] a, int low, int high) {
int temp = a[low];//基准元素
while(low<high){
//找到比基准元素小的元素位置
while(low<high && a[high]>=temp){
high--;
}
a[low] = a[high];
while(low<high && a[low]<=temp){
low++;
}
a[high] = a[low];
}
a[low] = temp;
return low;
}
}
4、分析
归并排序是稳定的排序方法。
归并排序的时间复杂度为O(nlogn)。
速度仅次于快速排序,为稳定排序算法,一般用于对总体无序,但是各子项相对有序的数列。
五、基数排序
1、基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
2、实例
3、java实现
package com.sort; //稳定
public class 归并排序 {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
System.out.println("排序之前:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//归并排序
mergeSort(a,0,a.length-1);
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
} private static void mergeSort(int[] a, int left, int right) {
if(left<right){
int middle = (left+right)/2;
//对左边进行递归
mergeSort(a, left, middle);
//对右边进行递归
mergeSort(a, middle+1, right);
//合并
merge(a,left,middle,right);
}
} private static void merge(int[] a, int left, int middle, int right) {
int[] tmpArr = new int[a.length];
int mid = middle+1; //右边的起始位置
int tmp = left;
int third = left;
while(left<=middle && mid<=right){
//从两个数组中选取较小的数放入中间数组
if(a[left]<=a[mid]){
tmpArr[third++] = a[left++];
}else{
tmpArr[third++] = a[mid++];
}
}
//将剩余的部分放入中间数组
while(left<=middle){
tmpArr[third++] = a[left++];
}
while(mid<=right){
tmpArr[third++] = a[mid++];
}
//将中间数组复制回原数组
while(tmp<=right){
a[tmp] = tmpArr[tmp++];
}
}
}
4、分析
基数排序是稳定的排序算法。
基数排序的时间复杂度为O(d(n+r)),d为位数,r为基数。
总结:
一、稳定性:
稳定:冒泡排序、插入排序、归并排序和基数排序
不稳定:选择排序、快速排序、希尔排序、堆排序
二、平均时间复杂度
O(n^2):直接插入排序,简单选择排序,冒泡排序。
在数据规模较小时(9W内),直接插入排序,简单选择排序差不多。当数据较大时,冒泡排序算法的时间代价最高。性能为O(n^2)的算法基本上是相邻元素进行比较,基本上都是稳定的。
O(nlogn):快速排序,归并排序,希尔排序,堆排序。
其中,快排是最好的, 其次是归并和希尔,堆排序在数据量很大时效果明显。
三、排序算法的选择
1.数据规模较小
(1)待排序列基本序的情况下,可以选择直接插入排序;
(2)对稳定性不作要求宜用简单选择排序,对稳定性有要求宜用插入或冒泡
2.数据规模不是很大
(1)完全可以用内存空间,序列杂乱无序,对稳定性没有要求,快速排序,此时要付出log(N)的额外空间。
(2)序列本身可能有序,对稳定性有要求,空间允许下,宜用归并排序
3.数据规模很大
(1)对稳定性有求,则可考虑归并排序。
(2)对稳定性没要求,宜用堆排序
4.序列初始基本有序(正序),宜用直接插入,冒泡
各种排序算法的分析及java实现 分类: B10_计算机基础 2015-02-03 20:09 186人阅读 评论(0) 收藏的更多相关文章
-
选择排序 分类: 算法 c/c++ 2014-10-10 20:32 509人阅读 评论(0) 收藏
选择排序(假设递增排序) 每次选取从当前结点到末尾结点中最小的一个与当前结点交换,每一轮固定一个元素位置. 时间复杂度O(n^2),空间复杂度O(1).下面的示例代码以带头结点的链表为存储结构: #i ...
-
Kruskal算法 分类: c/c++ 算法 2014-10-01 17:09 540人阅读 评论(0) 收藏
Kruskal算法计算最小生成树,只与边有关,时间复杂度O(eloge) 步骤: 1.将边按权值递增排序 2.依次取出边加入最小生成树中并保证无环,判断是否成环可利用并查集. 例:http://ac. ...
-
基于ArcGIS for Server的服务部署分析 分类: ArcGIS for server 云计算 2015-07-26 21:28 11人阅读 评论(0) 收藏
谨以此纪念去年在学海争锋上的演讲. ---------------------------------------------------- 基于ArcGIS for Server的服务部署分析 -- ...
-
java生成UUID通用唯一识别码 (Universally Unique Identifier) 分类: B1_JAVA 2014-08-22 16:09 331人阅读 评论(0) 收藏
转自:http://blog.csdn.net/carefree31441/article/details/3998553 UUID含义是通用唯一识别码 (Universally Unique Ide ...
-
NYOJ 119 士兵杀敌(三)【ST算法】 分类: Brush Mode 2014-11-13 20:56 101人阅读 评论(0) 收藏
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=119 解题思路: RMQ算法. 不会的可以去看看我总结的RMQ算法. http://blo ...
-
House Robber 分类: leetcode 算法 2015-07-09 20:53 2人阅读 评论(0) 收藏
DP 对于第i个状态(房子),有两种选择:偷(rob).不偷(not rob) 递推公式为: f(i)=max⎧⎩⎨⎪⎪{f(i−1)+vali,f(i−2)+vali,robi−1==0robi−1 ...
-
8大排序算法图文讲解 分类: Brush Mode 2014-08-18 11:49 78人阅读 评论(0) 收藏
排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 常见的内部排序算法有:插入排序.希尔排序. ...
-
8大排序算法图文讲解 分类: B10_计算机基础 2014-08-18 15:36 243人阅读 评论(0) 收藏
排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 常见的内部排序算法有:插入排序.希尔排序. ...
-
C# 数组排序 基本算法 分类: C# 2014-09-25 15:43 129人阅读 评论(0) 收藏
说明:冒泡.直接插入.选择.自带方法四中基本排序算法. using System; using System.Collections.Generic; using System.ComponentMo ...
随机推荐
-
[LeetCode] 452 Minimum Number of Arrows to Burst Balloons
There are a number of spherical balloons spread in two-dimensional space. For each balloon, provided ...
-
HDU 3085 Nightmare II 双向bfs 难度:2
http://acm.hdu.edu.cn/showproblem.php?pid=3085 出的很好的双向bfs,卡时间,普通的bfs会超时 题意方面: 1. 可停留 2. ghost无视墙壁 3. ...
-
Photoshop:制作金属质感-不锈钢纹理
效果图 过程: 1.滤镜->渲染->云彩 2.滤镜->模糊->高斯模糊 3.滤镜->杂色->添加杂色 ,数量10 4.滤镜->模糊->径向模糊 5.滤镜 ...
-
经典集合 与 IQueryable集合 的差别
经典集合 与 IQueryable集合 的差别 经典集合与IQueryable 集合存在本质的区别,经典结合是在内存中开辟一片区域用来存储数据,而IQueryable集合是延迟加载的集合,只有在用到的 ...
-
Windows Phone开发(29):隔离存储C
原文:Windows Phone开发(29):隔离存储C 本文是隔离存储的第三节,大家先喝杯咖啡放松,今天的内容也是非常简单,我们就聊一件东东--用户设置. 当然了,可能翻译为应用程序设置合适一些,不 ...
-
【转】44款Java 网络爬虫开源软件
原帖地址 http://www.oschina.net/project/lang/19?tag=64&sort=time 极简网络爬虫组件 WebFetch WebFetch 是无依赖极简网页 ...
-
nodejs 解决跨域
1.失败 app.all('*', function (req, res, next) { res.header("Access-Control-Allow-Origin", &q ...
-
Mysql 5.7 忘记root密码或重置密码的详细方法
在Centos中安装完MySQL数据库以后,不知道密码,这可怎么办,下面给大家说一下怎么重置密码 在Centos中安装完MySQL数据库以后,不知道密码,这可怎么办,下面给大家说一下怎么重置密码 1. ...
-
Servlet Life Cycle
Servlet Life Cycle http://docs.oracle.com/javaee/5/tutorial/doc/bnafi.html Servlet Filters and Event ...
-
个推数据统计产品(个数)iOS集成实践
最近业务方给我们部门提了新的需求,希望能一站式统计APP的几项重要数据.这次我们尝试使用的是个推(之前专门做消息推送的)旗下新推出的产品“个数·应用统计”,根据官方的说法,个推的数据统计产品通过专业的 ...