1、问题描述:
如何判断一个二叉树是否是另一个的子结构?
比如:
2
/ \
9 8
/ \ /
2 3 5
/
6
有个子结构是
9
/ \
2 3
2、分析问题:
有关二叉树的算法问题,一般都可以通过递归来解决。那么写成一个正确的递归程序,首先一定要分析正确递归结束的条件。
拿这道题来讲,什么时候递归结束。
<1>第二个二叉树root2为空时,说明root2是第一棵二叉树的root1的子结构,返回true。
<2>当root1为空时,此时root2还没为空,说明root2不是root1的子结构,返回false。
<3>递归下面有两种思路:
方法一:现在root1中找结点值与root2的值相等的结点,如果找到就判断root2是不是这个结点开头的子结构。所以,首先IsSubTree()判断。
方法二:就是直接判断,相同就递归判断root2左右子树是不是也是相应的子结构。如果值不相同,就分别递归到root1的左右子树寻找。尤其要注意最后两句递归的逻辑判断。
3、习题实例
题目描述:
输入两颗二叉树A,B,判断B是不是A的子结构。
输入:
输入可能包含多个测试样例,输入以EOF结束。
对于每个测试案例,输入的第一行一个整数n,m(1<=n<=1000,1<=m<=1000):n代表将要输入的二叉树A的节点个数(节点从1开始计数),m代表将要输入的二叉树B的节点个数(节点从1开始计数)。接下来一行有n个数,每个数代表A树中第i个元素的数值,接下来有n行,第一个数Ki代表第i个节点的子孩子个数,接下来有Ki个树,代表节点i子孩子节点标号。接下来m+1行,与树A描述相同。
输出:
对应每个测试案例,
若B是A的子树输出”YES”(不包含引号)。否则,输出“NO”(不包含引号)。
样例输入:
7 3
8 8 7 9 2 4 7
2 2 3
2 4 5
0
0
2 6 7
0
0
8 9 2
2 2 3
0
0
实现
第一步,在A树中查找和B树根节点一样的值,其实就是树的前序遍历,建议递归,方便(ps:非递归无非就是用个栈存储结点而已,没什么技术含量)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
/**
* 第一步判断,遍历A树查找是否有等于B树根结点的子树
*/
int judgeChildTree( struct btree *ahead, int numa, struct btree *bhead, int numb)
{
int flag = 0;
if (numa != -1 && numb != -1) {
if (ahead[numa].value == bhead[numb].value)
flag = doesTree1HasTree2(ahead, numa, bhead, numb);
if (! flag && ahead[numa].lchild != -1)
flag = judgeChildTree(ahead, ahead[numa].lchild, bhead, numb);
if (! flag && ahead[numa].rchild != -1)
flag = judgeChildTree(ahead, ahead[numa].rchild, bhead, numb);
}
return flag;
}
|
第二步,进一步判断A中以R为根节点的子树是不是与B树具有相同的结点
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
/**
* 第二步判断,判断A树是否有B树的子结构
*/
int doesTree1HasTree2( struct btree *ahead, int numa, struct btree *bhead, int numb)
{
if (numb == -1)
return 1;
if (numa == -1)
return 0;
if (ahead[numa].value != bhead[numb].value)
return 0;
return (doesTree1HasTree2(ahead, ahead[numa].lchild, bhead, bhead[numb].lchild) &&
doesTree1HasTree2(ahead, ahead[numa].rchild, bhead, bhead[numb].rchild));
}
|
完整代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
#include <stdio.h>
#include <stdlib.h>
// 二叉树结点定义
struct btree
{
int value;
int lchild, rchild;
};
// A树和B树的最多结点数
int n, m;
/**
* 第二步判断,判断A树是否有B树的子结构
*/
int doesTree1HasTree2( struct btree *ahead, int numa, struct btree *bhead, int numb)
{
if (numb == -1)
return 1;
if (numa == -1)
return 0;
if (ahead[numa].value != bhead[numb].value)
return 0;
return (doesTree1HasTree2(ahead, ahead[numa].lchild, bhead, bhead[numb].lchild) &&
doesTree1HasTree2(ahead, ahead[numa].rchild, bhead, bhead[numb].rchild));
}
/**
* 第一步判断,遍历A树查找是否有等于B树根结点的子树
*/
int judgeChildTree( struct btree *ahead, int numa, struct btree *bhead, int numb)
{
int flag = 0;
if (numa != -1 && numb != -1) {
if (ahead[numa].value == bhead[numb].value)
flag = doesTree1HasTree2(ahead, numa, bhead, numb);
if (! flag && ahead[numa].lchild != -1)
flag = judgeChildTree(ahead, ahead[numa].lchild, bhead, numb);
if (! flag && ahead[numa].rchild != -1)
flag = judgeChildTree(ahead, ahead[numa].rchild, bhead, numb);
}
return flag;
}
int main( void )
{
int i, data, count, left, right, flag;
struct btree *ahead, *bhead;
while ( scanf ( "%d %d" , &n, &m) != EOF) {
// 获取A树的节点值
ahead = ( struct btree *) malloc ( sizeof ( struct btree) * n);
for (i = 0; i < n; i ++) {
scanf ( "%d" , &data);
ahead[i].value = data;
ahead[i].lchild = ahead[i].rchild = -1;
}
for (i = 0; i < n; i ++) {
scanf ( "%d" , &count);
if (count == 0) {
continue ;
} else {
if (count == 1) {
scanf ( "%d" , &left);
ahead[i].lchild = left - 1;
} else {
scanf ( "%d %d" , &left, &right);
ahead[i].lchild = left - 1;
ahead[i].rchild = right - 1;
}
}
}
// 获取B树的节点值
bhead = ( struct btree *) malloc ( sizeof ( struct btree) * m);
for (i = 0; i < m; i ++) {
scanf ( "%d" , &data);
bhead[i].value = data;
bhead[i].lchild = bhead[i].rchild = -1;
}
for (i = 0; i < m; i ++) {
scanf ( "%d" , &count);
if (count == 0) {
continue ;
} else {
if (count == 1) {
scanf ( "%d" , &left);
bhead[i].lchild = left - 1;
} else {
scanf ( "%d %d" , &left, &right);
bhead[i].lchild = left - 1;
bhead[i].rchild = right - 1;
}
}
}
// 判断B树是否为A的子树
if (n == 0 || m == 0) {
printf ( "NO\n" );
continue ;
}
flag = judgeChildTree(ahead, 0, bhead, 0);
if (flag)
printf ( "YES\n" );
else
printf ( "NO\n" );
free (ahead);
free (bhead);
}
return 0;
}
|