正态分布:
若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)
其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布
判断方法有画图/k-s检验
画图:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
#导入模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline
#构造一组随机数据
s = pd.DataFrame(np.random.randn( 1000 ) + 10 ,columns = [ 'value' ])
#画散点图和直方图
fig = plt.figure(figsize = ( 10 , 6 ))
ax1 = fig.add_subplot( 2 , 1 , 1 ) # 创建子图1
ax1.scatter(s.index, s.values)
plt.grid()
ax2 = fig.add_subplot( 2 , 1 , 2 ) # 创建子图2
s.hist(bins = 30 ,alpha = 0.5 ,ax = ax2)
s.plot(kind = 'kde' , secondary_y = True ,ax = ax2)
plt.grid()
|
结果如下:
使用ks检验:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#导入scipy模块
from scipy import stats
"""
kstest方法:KS检验,参数分别是:待检验的数据,检验方法(这里设置成norm正态分布),均值与标准差
结果返回两个值:statistic → D值,pvalue → P值
p值大于0.05,为正态分布
H0:样本符合
H1:样本不符合
如何p>0.05接受H0 ,反之
"""
u = s[ 'value' ].mean() # 计算均值
std = s[ 'value' ].std() # 计算标准差
stats.kstest(s[ 'value' ], 'norm' , (u, std))
|
结果是KstestResult(statistic=0.01441344628501079, pvalue=0.9855029319675546),p值大于0.05为正太分布
以上就是python 判断一组数据是否符合正态分布的详细内容,更多关于python 正态分布的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/cgmcoding/p/13253934.html