拉格朗日插值+dp
直接dp是n立方的,我们考虑优化。
dp式子为f[i][j]=f[i-1][j-1]*j*i+f[i-1][j]表示i个元素选j个的答案
然后发现最高次就是2j次,所以我们预处理出2n个点的值再用拉格朗日一插就好。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int A,n,mod;
int qmod(int a,int b)
{
int ans=;
while(b)
{
if(b&)ans=1ll*ans*a%mod;
b>>=;a=1ll*a*a%mod;
}
return ans;
}
ll f[][],inv[],las[],fac[],pre[],ans;
int main()
{
scanf("%d%d%d",&A,&n,&mod);
f[][]=;
for(int i=;i<=min(n*,A);++i)
for(int j=;j<=n;++j)
if(j)f[i][j]=(1ll*i%mod*j%mod*f[i-][j-]%mod+f[i-][j])%mod;
else f[i][j]=f[i-][j];
if(A<=n*){
printf("%d\n",f[A][n]);
return ;
}
inv[]=inv[]=fac[]=inv[]=;
pre[]=A%mod;
for(int i=;i<=n*;++i)
{
pre[i]=pre[i-]*(A-i)%mod;
fac[i]=fac[i-]*i%mod;
}
las[n*]=(A-n*)%mod;inv[n*]=qmod(fac[n*],mod-);
for(int i=n*-;i>=;--i)las[i]=las[i+]*(A-i+mod)%mod;
for(int i=n*-;i>=;--i)inv[i]=inv[i+]*(i+)%mod;
for(int i=;i<=n*;++i)
{
ll INV,FAC=;
if((n*-i)&)INV=-1ll*inv[i]*inv[n*-i]%mod;
else INV=1ll*inv[i]*inv[n*-i]%mod;
if(i>)FAC=pre[i-]%mod;
if(i<n*)FAC=FAC*las[i+]%mod;
ans=(ans+FAC*f[i][n]%mod*INV%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}