Python实现破解12306图片验证码的方法分析

时间:2021-08-16 06:55:36

本文实例讲述了Python实现破解12306图片验证码的方法。分享给大家供大家参考,具体如下:

不知从何时起,12306的登录验证码竟然变成了按字找图,可以说是又提高了一个等次,竟然把图像识别都用上了。不过有些图片,不得不说有些变态,图片的清晰图就更别说了,明显是从网络上的图库中搬过来的。

Python实现破解12306图片验证码的方法分析

谁知没多久,网络就惊现破解12306图片验证码的Python代码了,作为一个爱玩爱刺激的网虫,当然要分享一份过来。

代码大致流程:

1、将验证码图片下载下来,然后切图;
2、利用百度识图进行图片分析;
3、再利用正则表达式来取出百度识图的关键字,最后输出。

代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/python
# # FileName  : fuck12306.py
# # Author   : MaoMao Wang <andelf@gmail.com>
# # Created   : Mon Mar 16 22:08:41 2015 by ShuYu Wang
# # Copyright  : Feather (c) 2015
# # Description : fuck fuck 12306
# # Time-stamp: <2015-03-17 10:57:44 andelf>
from PIL import Image
from PIL import ImageFilter
import urllib
import urllib2
import re
import json
# hack CERTIFICATE_VERIFY_FAILED
# https://github.com/mtschirs/quizduellapi/issues/2
import ssl
if hasattr(ssl, '_create_unverified_context'):
  ssl._create_default_https_context = ssl._create_unverified_context
UA = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2272.89 Safari/537.36"
pic_url = "https://kyfw.12306.cn/otn/passcodeNew/getPassCodeNew?module=login&rand=sjrand&0.21191171556711197"
def get_img():
  resp = urllib.urlopen(pic_url)
  raw = resp.read()
  with open("./tmp.jpg", 'wb') as fp:
    fp.write(raw)
  return Image.open("./tmp.jpg")
def get_sub_img(im, x, y):
  assert 0 <= x <= 3
  assert 0 <= y <= 2
  WITH = HEIGHT = 68
  left = 5 + (67 + 5) * x
  top = 41 + (67 + 5) * y
  right = left + 67
  bottom = top + 67
  return im.crop((left, top, right, bottom))
def baidu_stu_lookup(im):
  url = "http://stu.baidu.com/n/image?fr=html5&needRawImageUrl=true&id=WU_FILE_0&name=233.png&type=image%2Fpng&lastModifiedDate=Mon+Mar+16+2015+20%3A49%3A11+GMT%2B0800+(CST)&size="
  im.save("./query_temp_img.png")
  raw = open("./query_temp_img.png", 'rb').read()
  url = url + str(len(raw))
  req = urllib2.Request(url, raw, {'Content-Type':'image/png', 'User-Agent':UA})
  resp = urllib2.urlopen(req)
  resp_url = resp.read()   # return a pure url
  url = "http://stu.baidu.com/n/searchpc?queryImageUrl=" + urllib.quote(resp_url)
  req = urllib2.Request(url, headers={'User-Agent':UA})
  resp = urllib2.urlopen(req)
  html = resp.read()
  return baidu_stu_html_extract(html)
def baidu_stu_html_extract(html):
  #pattern = re.compile(r'<script type="text/javascript">(.*?)</script>', re.DOTALL | re.MULTILINE)
  pattern = re.compile(r"keywords:'(.*?)'")
  matches = pattern.findall(html)
  if not matches:
    return '[UNKNOWN]'
  json_str = matches[0]
  json_str = json_str.replace('\\x22', '"').replace('\\\\', '\\')
  #print json_str
  result = [item['keyword'] for item in json.loads(json_str)]
  return '|'.join(result) if result else '[UNKNOWN]'
def ocr_question_extract(im):
  # git@github.com:madmaze/pytesseract.git
  global pytesseract
  try:
    import pytesseract
  except:
    print "[ERROR] pytesseract not installed"
    return
  im = im.crop((127, 3, 260, 22))
  im = pre_ocr_processing(im)
  # im.show()
  return pytesseract.image_to_string(im, lang='chi_sim').strip()
def pre_ocr_processing(im):
  im = im.convert("RGB")
  width, height = im.size
  white = im.filter(ImageFilter.BLUR).filter(ImageFilter.MaxFilter(23))
  grey = im.convert('L')
  impix = im.load()
  whitepix = white.load()
  greypix = grey.load()
  for y in range(height):
    for x in range(width):
      greypix[x,y] = min(255, max(255 + impix[x,y][0] - whitepix[x,y][0],
                    255 + impix[x,y][1] - whitepix[x,y][1],
                    255 + impix[x,y][2] - whitepix[x,y][2]))
  new_im = grey.copy()
  binarize(new_im, 150)
  return new_im
def binarize(im, thresh=120):
  assert 0 < thresh < 255
  assert im.mode == 'L'
  w, h = im.size
  for y in xrange(0, h):
    for x in xrange(0, w):
      if im.getpixel((x,y)) < thresh:
        im.putpixel((x,y), 0)
      else:
        im.putpixel((x,y), 255)
if __name__ == '__main__':
  im = get_img()
  #im = Image.open("./tmp.jpg")
  print 'OCR Question:', ocr_question_extract(im)
  for y in range(2):
    for x in range(4):
      im2 = get_sub_img(im, x, y)
      result = baidu_stu_lookup(im2)
      print (y,x), result

希望本文所述对大家Python程序设计有所帮助。

原文链接:http://blog.csdn.net/wuxing26jiayou/article/details/78915864