DeepLearn Toolbox是一个非常有用的matlab deep learning工具包,下载地址:https://github.com/dupuleng/DeepLearnToolbox-master
要使用它首先要将该工具包添加到matlab的搜索路径中,
1、将包复制到matlab 的toolbox中,作者的路径是D:\program Files\matlab\toolbox\
2、在matlab的命令行中输入:
cd D:\program Files\matlab\toolbox\deepLearnToolbox\ addpath(gepath(\'D:\program Files\matlab\toolbox\deepLearnToolbox-master\\') savepath %保存,这样就不需要每次都添加一次
3、验证添加是否成功,在命令行中输入
which saesetup
如果成功就会出现,saesetup.m的路径D:\program Files\matlab\toolbox\deepLearnToolbox-master\SAE\saesetup.m
4、使用deepLearnToolbox
load mnist_uint8; train_x = double(train_x)/255; test_x = double(test_x)/255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN % Setup and train a stacked denoising autoencoder (SDAE) rand(\'state\',0) sae = saesetup([784 100]); sae.ae{1}.activation_function = \'sigm\'; sae.ae{1}.learningRate = 1; sae.ae{1}.inputZeroMaskedFraction = 0.5; opts.numepochs = 1; opts.batchsize = 100; sae = saetrain(sae, train_x, opts); visualize(sae.ae{1}.W{1}(:,2:end)\') % Use the SDAE to initialize a FFNN nn = nnsetup([784 100 10]); nn.activation_function = \'sigm\'; nn.learningRate = 1; nn.W{1} = sae.ae{1}.W{1}; % Train the FFNN opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.16, \'Too big error\');