FROM:http://www.drdobbs.com/parallel/indexing-and-searching-on-a-hadoop-distr/226300241?pgno=3
在今天的信息饱和的世界,地理分布的数据,需要一种系统的巨大增长,有利于快速检索有意义的结果的解析。分布式数据的可搜索的索引去加速的过程很长的路要走。在这篇文章中,我演示了如何使用Lucene和Java的基本数据索引和搜索,如何使用RAM目录索引和搜索,如何创建居住在HDF的数据索引,以及如何搜索这些索引。由开发环境,Eclipse的Java 1.6的Lucene的2.4.0,3.4.2,和Hadoop 0.19.1上运行微软Windows XP SP3。
为了解决这个任务,我把Hadoop的。Apache Hadoop项目的开发可靠,可扩展,分布式计算开源软件,Hadoop分布式文件系统(HDFS)是专为跨广域网的存储和共享文件。HDFS是建立在商品硬件上运行,并提供了容错,资源管理,以及最重要的是,应用程序数据访问的高吞吐量。
在本地文件系统上创建索引
第一步是创建一个索引存储在本地文件系统上的数据。开始通过创建一个Eclipse项目中,创建一个类,然后添加所需的JAR文件添加到项目。以这个例子发现在Web服务器中的日志文件的应用程序的数据:
2010-04-21 02:24:01 GET /blank 200 120
此数据被映射到某些字段:
- 2010-04-21 - 日期字段
- 2时24分01秒 - 时间字段
- GET - 法域(GET或POST) - 我们将记为“CS-方法”
- /空白 - 请求的URL字段 - 我们将表示为“CS-URI”
- 200 - 状态代码的请求 - 我们会记为“SC-状态”
- 120 - 时间采取现场(完成请求所需的时间)
目前在我们的样本文件的数据位于一个"E:\DataFile"名为“test.txt的”如下:2010-04-21 02:24:01 GET /blank 200 120
2010-04-21 02:24:01 GET /US/registrationFrame 200 605
2010-04-21 02:24:02 GET /US/kids/boys 200 785
2010-04-21 02:24:02 POST /blank 304 56
2010-04-21 02:24:04 GET /blank 304 233
2010-04-21 02:24:04 GET /blank 500 567
2010-04-21 02:24:04 GET /blank 200 897
2010-04-21 02:24:04 POST /blank 200 567
2010-04-21 02:24:05 GET /US/search 200 658
2010-04-21 02:24:05 POST /US/shop 200 768
2010-04-21 02:24:05 GET /blank 200 347
我们要建立索引的数据出现在这个“test.txt的”文件,并保存到本地文件系统的索引。下面的Java代码,这样做。(注意每个部分的代码做什么的详细信息)的意见。
// Creating IndexWriter object and specifying the path where Indexed
//files are to be stored.
IndexWriter indexWriter = new IndexWriter("E://DataFile/IndexFiles", new StandardAnalyzer(), true); // Creating BufferReader object and specifying the path of the file
//whose data is required to be indexed.
BufferedReader reader= new BufferedReader(new FileReader("E://DataFile/Test.txt")); String row=null; // Reading each line present in the file.
while ((row=reader.readLine())!= null)
{
// Getting each field present in a row into an Array and file delimiter is "space separated"
String Arow[] = row.split(" "); // For each row, creating a document and adding data to the document with the associated fields.
org.apache.lucene.document.Document document = new org.apache.lucene.document.Document(); document.add(new Field("date",Arow[0],Field.Store.YES,Field.Index.ANALYZED));
document.add(new Field("time",Arow[1],Field.Store.YES,Field.Index.ANALYZED));
document.add(newField ("cs-method",Arow[2],Field.Store.YES,Field.Index.ANALYZED));
document.add(newField ("cs-uri",Arow[3],Field.Store.YES,Field.Index.ANALYZED));
document.add(newField ("sc-status",Arow[4],Field.Store.YES,Field.Index.ANALYZED));
document.add(newField ("time-taken",Arow[5],Field.Store.YES,Field.Index.ANALYZED)); // Adding document to the index file.
indexWriter.addDocument(document);
}
indexWriter.optimize();
indexWriter.close();
reader.close();
的Java代码一旦被执行,将创建和索引文件存放在“E :/ /DataFile/ IndexFiles的位置。”
现在,我们可以搜索索引文件中的数据,我们刚刚创建的。基本上,搜索的“场”的数据上完成。您可以使用Lucene搜索引擎支持各种搜索语义搜索,你可以在一个特定的字段或字段组合执行搜索。下面的Java代码搜索索引:
// Creating Searcher object and specifying the path where Indexed files are stored.
Searcher searcher = new IndexSearcher("E://DataFile/IndexFiles");
Analyzer analyzer = new StandardAnalyzer(); // Printing the total number of documents or entries present in the index file.
System.out.println("Total Documents = "+searcher.maxDoc()) ; // Creating the QueryParser object and specifying the field name on
//which search has to be done.
QueryParser parser = new QueryParser("cs-uri", analyzer); // Creating the Query object and specifying the text for which search has to be done.
Query query = parser.parse("/blank"); // Below line performs the search on the index file and
Hits hits = searcher.search(query); // Printing the number of documents or entries that match the search query.
System.out.println("Number of matching documents = "+ hits.length()); // Printing documents (or rows of file) that matched the search criteria.
for (int i = 0; i < hits.length(); i++)
{
Document doc = hits.doc(i);
System.out.println(doc.get("date")+" "+ doc.get("time")+ " "+
doc.get("cs-method")+ " "+ doc.get("cs-uri")+ " "+ doc.get("sc-status")+ " "+ doc.get("time-taken"));
在这个例子中,搜索完成领域cs的uri的cs的uri的字段/空白内搜索的文本。因此,搜索代码运行时,所有的文件(或行)的CS-URI字段包含/空白,显示在输出中。的输出如下所示:
Total Documents = 11
Number of matching documents = 7
2010-04-21 02:24:01 GET /blank 200 120
2010-04-21 02:24:02 POST /blank 304 56
2010-04-21 02:24:04 GET /blank 304 233
2010-04-21 02:24:04 GET /blank 500 567
2010-04-21 02:24:04 GET /blank 200 897
2010-04-21 02:24:04 POST /blank 200 567
2010-04-21 02:24:05 GET /blank 200 347
HDFS上的基于内存的索引
现在考虑数据的情况下,位于一个像Hadoop DFS分布式文件系统。上述代码将无法正常工作分布式数据上直接创建索引,所以我们不得不完成前几步的诉讼程序,如从HDFS数据复制到本地文件系统,创建索引的数据出现在本地文件系统,最后将索引文件存储到HDFS。同样的步骤将需要搜索。但这种方法耗时且最理想的,相反,让我们的索引和搜索我们的数据使用HDFS节点的内存中的数据是居住。
假设数据文件“Test.txt的”早期使用现在居住在HDFS上,里面一个工作目录文件夹,名为“/数据文件/ Test.txt的。” 创建另一个称为“/ IndexFiles”HDFS的工作目录里面的文件夹,我们生成的索引文件将被存储。下面的Java代码在内存中的文件存储在HDFS上创建索引文件:
// Path where the index files will be stored.
String Index_DIR="/IndexFiles/";
// Path where the data file is stored.
String File_DIR="/DataFile/test.txt";
// Creating FileSystem object, to be able to work with HDFS
Configuration config = new Configuration();
config.set("fs.default.name","hdfs://127.0.0.1:9000/");
FileSystem dfs = FileSystem.get(config);
// Creating a RAMDirectory (memory) object, to be able to create index in memory.
RAMDirectory rdir = new RAMDirectory(); // Creating IndexWriter object for the Ram Directory
IndexWriter indexWriter = new IndexWriter (rdir, new StandardAnalyzer(), true); // Creating FSDataInputStream object, for reading the data from "Test.txt" file residing on HDFS.
FSDataInputStream filereader = dfs.open(new Path(dfs.getWorkingDirectory()+ File_DIR));
String row=null; // Reading each line present in the file.
while ((row=reader.readLine())!=null)
{ // Getting each field present in a row into an Array and file //delimiter is "space separated".
String Arow[]=row.split(" "); // For each row, creating a document and adding data to the document
//with the associated fields.
org.apache.lucene.document.Document document = new org.apache.lucene.document.Document(); document.add(new Field("date",Arow[0],Field.Store.YES,Field.Index.ANALYZED));
document.add(new Field("time",Arow[1],Field.Store.YES,Field.Index.ANALYZED));
document.add(new Field ("cs-method",Arow[2],Field.Store.YES,Field.Index.ANALYZED));
document.add(new Field ("cs-uri",Arow[3],Field.Store.YES,Field.Index.ANALYZED));
document.add(new Field ("sc-status",Arow[4],Field.Store.YES,Field.Index.ANALYZED));
document.add(new Field ("time-taken",Arow[5],Field.Store.YES,Field.Index.ANALYZED)); // Adding document to the index file.
indexWriter.addDocument(document);
}
indexWriter.optimize();
indexWriter.close();
reader.close();
因此,对于“test.txt的”居住在HDFS上的文件,我们现在有在内存中创建索引文件。存储索引文件,在HDFS文件夹:
// Getting files present in memory into an array.
String fileList[]=rdir.list(); // Reading index files from memory and storing them to HDFS.
for (int i = 0; I < fileList.length; i++)
{
IndexInput indxfile = rdir.openInput(fileList[i].trim());
long len = indxfile.length();
int len1 = (int) len; // Reading data from file into a byte array.
byte[] bytarr = new byte[len1];
indxfile.readBytes(bytarr, 0, len1); // Creating file in HDFS directory with name same as that of
//index file
Path src = new Path(dfs.getWorkingDirectory()+Index_DIR+ fileList[i].trim());
dfs.createNewFile(src); // Writing data from byte array to the file in HDFS
FSDataOutputStream fs = dfs.create(new Path(dfs.getWorkingDirectory()+Index_DIR+fileList[i].trim()),true);
fs.write(bytarr);
fs.close();
现在我们有必要的Test.txt的“数据文件创建并存储在HDFS目录的索引文件。
基于内存搜索HDFS上
我们现在可以搜索存储在HDFS中的索引。首先,我们必须使HDFS的索引文件在内存中进行搜索。下面的代码是用于这一过程:
// Creating FileSystem object, to be able to work with HDFS
Configuration config = new Configuration();
config.set("fs.default.name","hdfs://127.0.0.1:9000/");
FileSystem dfs = FileSystem.get(config); // Creating a RAMDirectory (memory) object, to be able to create index in memory.
RAMDirectory rdir = new RAMDirectory(); // Getting the list of index files present in the directory into an array.
Path pth = new Path(dfs.getWorkingDirectory()+Index_DIR);
FileSystemDirectory fsdir = new FileSystemDirectory(dfs,pth,false,config);
String filelst[] = fsdir.list();
FSDataInputStream filereader = null;
for (int i = 0; i<filelst.length; i++)
{
// Reading data from index files on HDFS directory into filereader object.
filereader = dfs.open(new Path(dfs.getWorkingDirectory()+Index_DIR+filelst[i])); int size = filereader.available(); // Reading data from file into a byte array.
byte[] bytarr = new byte[size];
filereader.read(bytarr, 0, size); // Creating file in RAM directory with names same as that of
//index files present in HDFS directory.
IndexOutput indxout = rdir.createOutput(filelst[i]); // Writing data from byte array to the file in RAM directory
indxout.writeBytes(bytarr,bytarr.length);
indxout.flush();
indxout.close();
}
filereader.close();
现在我们有了所有所需的索引文件在RAM中的目录(或存储器),所以我们可以直接执行搜索索引文件。搜索代码将被用于搜索本地文件系统类似,唯一的变化是,现在将使用RAM的目录对象(RDIR),而不是使用本地文件系统目录路径创建的搜索对象。
Searcher searcher = new IndexSearcher(rdir);
Analyzer analyzer = new StandardAnalyzer(); System.out.println("Total Documents = "+searcher.maxDoc()) ; QueryParser parser = new QueryParser("time", analyzer); Query query = parser.parse("02\\:24\\:04"); Hits hits = searcher.search(query); System.out.println("Number of matching documents = "+ hits.length()); for (int i = 0; i < hits.length(); i++)
{
Document doc = hits.doc(i);
System.out.println(doc.get("date")+" "+ doc.get("time")+ " "+
doc.get("cs-method")+ " "+ doc.get("cs-uri")+ " "+ doc.get("sc-status")+ " "+ doc.get("time-taken"));
以下输出,搜索是场上的“时间”和“时间”字段内的文本搜索“02 \ \ 24 \ \ 04。” 因此,运行代码时,所有的文件(或行)的“时间”字段中包含“02:\ \ 24 \ \ 04”,在输出中显示:
Total Documents = 11
Number of matching documents = 4
2010-04-21 02:24:04 GET /blank 304 233
2010-04-21 02:24:04 GET /blank 500 567
2010-04-21 02:24:04 GET /blank 200 897
2010-04-21 02:24:04 POST /blank 200 567
结论
像HDFS分布式文件系统是一个强大的工具,用于存储和访问大量的数据提供给我们的今天。随着内存的索引和搜索,访问数据,你真的想找到你不关心数据的群山之中得到稍微容易一些。
在Hadoop分布式文件系统的索引和搜索的更多相关文章
-
Hadoop分布式文件系统HDFS详解
Hadoop分布式文件系统即Hadoop Distributed FileSystem. 当数据集的大小超过一*立的物理计算机的存储能力时,就有必要对它进行分区(Partition)并 ...
-
Hive数据导入——数据存储在Hadoop分布式文件系统中,往Hive表里面导入数据只是简单的将数据移动到表所在的目录中!
转自:http://blog.csdn.net/lifuxiangcaohui/article/details/40588929 Hive是基于Hadoop分布式文件系统的,它的数据存储在Hadoop ...
-
初识hadoop --- (分布式文件系统 + 分块计算)
[转载] + 整理 2016-11-18 使用范围: Hadoop典型应用有:搜索.日志处理.推荐系统.数据分析.视频图像分析.数据保存等. Hadoop历史 雏形开始于2002年的Apache的Nu ...
-
Hadoop 分布式文件系统:架构和设计
引言 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时,它和其他的分布式文件系统 ...
-
【官方文档】Hadoop分布式文件系统:架构和设计
http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_design.html 引言 前提和设计目标 硬件错误 流式数据访问 大规模数据集 简单的一致性模型 “移动计 ...
-
图解向hadoop分布式文件系统写文件的工作流程
网上看到一张关于hadoop分布式文件系统(hdfs)的工作原理的图片,其实主要是介绍了向hdfs写一个文件的流程.图中的流程已经非常清晰,直接上图 好吧,博客园告诉我少于200字的文章不允许发布到网 ...
-
Hadoop分布式文件系统HDFS的工作原理
Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应 ...
-
第3章:Hadoop分布式文件系统(1)
当数据量增大到超出了单个物理计算机存储容量时,有必要把它分开存储在多个不同的计算机中.那些管理存储在多个网络互连的计算机中的文件系统被称为"分布式文件系统".由于这些计算机是基于网 ...
-
Hadoop分布式文件系统使用指南
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_user_guide.html 目的 概述 先决条件 Web接口 Shell命令 DFSAdmin命 ...
随机推荐
-
Neural Pathways of Interaction Mediating the Central Control of Autonomic Bodily State 自主神经系统-大脑调节神经通路
Figure above: Critchley H D, Harrison N A. Visceral influences on brain and behavior[J]. Neuron, 201 ...
-
apache2.4 windows764 python cgi
修改conf下的httpd.conf; 1:Listen和ServerName修改为相同的端口号,如8066 2:ScriptAlias就让他留在原位置,"${SRVROOT}/cgi-bi ...
-
PHP try catch
本文转载自百度知道 http://zhidao.baidu.com/link?url=Wi5EOXIf12yBp9d_4VoFHCUFtlTPcZJ0sxidLspV6P7qAqYMap3IC6dXE ...
-
oracle 变量声明 初始化 赋值
DECLARE sname VARCHAR2(20); BEGIN sname:='xxx'; sname:=sname||' and tom'; dbms_output.put_line(sname ...
-
Codeforces Round #260 (Div. 2) B
Description Fedya studies in a gymnasium. Fedya's maths hometask is to calculate the following expre ...
-
共享内存shared pool (5):详解一条SQL在library cache中解析
前面介绍的 shared pool,library cache结构,都是为了说明一条SQL是如何被解析的.先看下面的图: 图中涉及的各结构简单介绍 父HANDLE,里面有父游标堆0的地址.. 父游标堆 ...
-
IO库 8.3
题目:什么情况下,下面的while循环会终止? while(cin >> i) /* ... */ 解答:当读取发生错误时上述while循环会终止.比如i是整形,却输入非整形的数:输入文件 ...
-
Page visibility 页面可见性
一直以来,判断页面是不是当前可见标签,浏览器有没有缩小都是比较麻烦的. 通过页面可见性API可以获得相关信息document.hidden 判断页面当前是不是可见的document.visibi ...
-
【由浅至深】redis 实现发布订阅的几种方式
非常感谢依乐祝发表文章<.NET Core开发者的福音之玩转Redis的又一傻瓜式神器推荐>,对csredis作了一次完整的诠释. 前言 提到消息队列,最熟悉无疑是 rabbitmq,它基 ...
-
Python初始环境搭建和Pycharm的安装
首先我们来安装python 1.首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进入之后如下图,选择图中红色圈中区域进行下载.