理论
傅立叶变换用于分析各种滤波器的频率特性,对于图像,2d离散傅里叶变换(dft)用于找到频域.快速傅里叶变换(fft)的快速算法用于计算dft.
于一个正弦信号,x(t)=asin(2πft),我们可以说 f 是信号的频率,如果它的频率域被接受,我们可以看到 f 的峰值.如果信号被采样来形成一个离散信号,我们得到相同的频率域,但是在[−π,π] or [0,2π]范围内是周期性的 (or [0,n] for n-point dft).
可以将图像视为在两个方向上采样的信号.因此,在x和y方向上进行傅里叶变换可以得到图像的频率表示.
更直观的是,对于正弦信号,如果振幅在短时间内变化得非常快,你可以说它是一个高频信号.如果它变化缓慢,它是一个低频信号,可以把同样的想法扩展到图片上,边和噪声是图像中的高频内容,如果振幅没有很大的变化,那就是低频分量.
numpy中的傅里叶变换
np.fft.fft2()
第一个参数是输入图像,它是灰度图像
第二个参数是可选的,它决定了输出数组的大小,如果它大于输入图像的大小,则输入图像在计算fft之前填充了0.如果它小于输入图像,输入图像将被裁剪,如果没有参数传递,输出数组的大小将与输入相同.
一旦得到结果,零频率分量(dc分量)将位于左上角。 如果要将其置于中心位置,则需要在两个方向上将结果移动n2.np.fft.fftshift()
,一旦你找到频率变换,你就能找到大小谱.
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread( 'img.jpg' , 0 )
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20 * np.log(np. abs (fshift))
plt.subplot( 121 ),plt.imshow(img, cmap = 'gray' )
plt.title( 'input image' ), plt.xticks([]), plt.yticks([])
plt.subplot( 122 ),plt.imshow(magnitude_spectrum, cmap = 'gray' )
plt.title( 'magnitude spectrum' ), plt.xticks([]), plt.yticks([])
plt.show()
|
可以在中心看到更多的白色区域,表示低频率的内容更多.
现在可以在频域做一些运算,比如高通滤波和重建图像也就是找到逆dft,只需用一个矩形窗口大小的60x60来移除低频部分,使用np.fft.ifftshift()
应用反向移动,使dc组件再次出现在左上角,然后使用np.ifft2()
函数找到反fft,结果将会是一个复数,可以取它的绝对值.
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread( 'img.jpg' , 0 )
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20 * np.log(np. abs (fshift))
rows, cols = img.shape
crow,ccol = int (rows / 2 ) , int (cols / 2 )
fshift[crow - 30 :crow + 30 , ccol - 30 :ccol + 30 ] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np. abs (img_back)
plt.subplot( 221 ),plt.imshow(img, cmap = 'gray' )
plt.title( 'input image' ), plt.xticks([]), plt.yticks([])
plt.subplot( 222 ),plt.imshow(magnitude_spectrum, cmap = 'gray' )
plt.title( 'magnitude spectrum' ), plt.xticks([]), plt.yticks([])
plt.subplot( 223 ),plt.imshow(img_back)
plt.title( 'result in jet' ), plt.xticks([]), plt.yticks([])
plt.subplot( 224 ),plt.imshow(img_back, cmap = 'gray' )
plt.title( 'image after hpf' ), plt.xticks([]), plt.yticks([])
plt.show()
|
结果表明,高通滤波是一种边缘检测操作.
opencv中的傅里叶变换
opencv提供了cv.dft()
和cv.idft()
函数.它返回与前面相同的结果,但是有两个通道.第一个通道将会有结果的实部,第二个通道将会有一个虚部.
输入图像首先应该转换为np.float32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread( 'img.jpg' , 0 )
dft = cv2.dft(np.float32(img),flags = cv2.dft_complex_output)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:,:, 0 ],dft_shift[:,:, 1 ]))
plt.subplot( 121 ),plt.imshow(img, cmap = 'gray' )
plt.title( 'input image' ), plt.xticks([]), plt.yticks([])
plt.subplot( 122 ),plt.imshow(magnitude_spectrum, cmap = 'gray' )
plt.title( 'magnitude spectrum' ), plt.xticks([]), plt.yticks([])
plt.show()
|
也可以使用cv.carttopolar()
,它可以在一次拍摄中同时返回大小和相位.
现在我们要做的是逆dft.这次我们将移除图像中的高频内容,即我们将lpf应用到图像中.它实际上模糊了图像.为此,我们先创建一个具有高值(1)低频率的掩模,即我们通过低频内容,而在高频区域则是0。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread( 'img.jpg' , 0 )
dft = cv2.dft(np.float32(img),flags = cv2.dft_complex_output)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow,ccol = int (rows / 2 ) , int (cols / 2 )
# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows,cols, 2 ),np.uint8)
mask[crow - 30 :crow + 30 , ccol - 30 :ccol + 30 ] = 1
# apply mask and inverse dft
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:, 0 ],img_back[:,:, 1 ])
plt.subplot( 121 ),plt.imshow(img, cmap = 'gray' )
plt.title( 'input image' ), plt.xticks([]), plt.yticks([])
plt.subplot( 122 ),plt.imshow(img_back, cmap = 'gray' )
plt.title( 'magnitude spectrum' ), plt.xticks([]), plt.yticks([])
plt.show()
|
note:
opencv函数cv.dft()
和cv.idft()
比numpy函数更快.但是numpy功能更加用户友好.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://segmentfault.com/a/1190000015679127