python绘制评估优化算法性能的测试函数

时间:2021-11-04 05:32:31

测试函数主要是用来评估优化算法特性的,这里我用python3绘制了部分测试函数的图像。具体的测试函数可以结合*来了解。想要显示某个测试函数的图片把代码结尾对应的注释去掉即可,具体代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
 
 
def draw_pic(X, Y, Z, z_max, title, z_min=0):
 fig = plt.figure()
 ax = Axes3D(fig)
 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
 # ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot)
 ax.set_zlim(z_min, z_max)
 ax.set_title(title)
 # plt.savefig("./myProject/Algorithm/pic/%s.png" % title) # 保存图片
 plt.show()
 
 
def get_X_AND_Y(X_min, X_max, Y_min, Y_max):
 X = np.arange(X_min, X_max, 0.1)
 Y = np.arange(Y_min, Y_max, 0.1)
 X, Y = np.meshgrid(X, Y)
 return X, Y
 
 
# rastrigin测试函数
def Rastrigin(X_min = -5.52, X_max = 5.12, Y_min = -5.12, Y_max = 5.12):
 A = 10
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = 2 * A + X ** 2 - A * np.cos(2 * np.pi * X) + Y ** 2 - A * np.cos(2 * np.pi * Y)
 return X, Y, Z, 100, "Rastrigin function"
 
 
# Ackley测试函数
def Ackley(X_min = -5, X_max = 5, Y_min = -5, Y_max = 5):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = -20 * np.exp(-0.2 * np.sqrt(0.5 * (X**2 + Y**2))) - \
  np.exp(0.5 * (np.cos(2 * np.pi * X) + np.cos(2 * np.pi * Y))) + np.e + 20
 return X, Y, Z, 15, "Ackley function"
 
 
# Sphere测试函数
def Sphere(X_min = -3, X_max = 3, Y_min = -3, Y_max = 3):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = X**2 + Y**2
 return X, Y, Z, 20, "Sphere function"
 
 
# beale测试函数
def Beale(X_min = -4.5, X_max = 4.5, Y_min = -4.5, Y_max = 4.5):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = np.power(1.5 - X + X * Y, 2) + np.power(2.25 - X + X * (Y ** 2), 2) \
  + np.power(2.625 - X + X * (Y ** 3), 2)
 return X, Y, Z, 150000, "Beale function"
 
 
# Booth测试函数
def Booth(X_min = -10, X_max = 10, Y_min = -10, Y_max = 10):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = np.power(X + 2*Y - 7, 2) + np.power(2 * X + Y - 5, 2)
 return X, Y, Z, 2500, "Booth function"
 
 
# Bukin测试函数
def Bukin(X_min = -15, X_max = -5, Y_min = -3, Y_max = 3):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = 100 * np.sqrt(np.abs(Y - 0.01 * X**2)) + 0.01 * np.abs(X + 10)
 return X, Y, Z, 200, "Bukin function"
 
 
# Three-hump camel测试函数
def three_humpCamel(X_min = -5, X_max = 5, Y_min = -5, Y_max = 5):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = 2 * X**2 - 1.05 * X**4 + (1/6) * X**6 + X*Y + Y*2
 return X, Y, Z, 2000, "three-hump camel function"
 
 
# Hölder table测试函数
def Holder_table(X_min = -10, X_max = 10, Y_min = -10, Y_max = 10):
 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max)
 Z = -np.abs(np.sin(X) * np.cos(Y) * np.exp(np.abs(1 - np.sqrt(X**2 + Y**2)/np.pi)))
 return X, Y, Z, 0, "Hölder table function", -20
 
 
 
z_min = None
# X, Y, Z, z_max, id="codetool">

以下是上述代码绘制的测试函数的图像:

python绘制评估优化算法性能的测试函数

python绘制评估优化算法性能的测试函数

python绘制评估优化算法性能的测试函数

python绘制评估优化算法性能的测试函数

python绘制评估优化算法性能的测试函数

python绘制评估优化算法性能的测试函数

python绘制评估优化算法性能的测试函数

python绘制评估优化算法性能的测试函数

感觉图像的颜色还不是很好看,等之后优化了来改

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/wang454592297/article/details/80336753

延伸 · 阅读

精彩推荐
  • Pythonpython绘制评估优化算法性能的测试函数

    python 获取毫秒数,计算调用时长的方法

    今天小编就为大家分享一篇python 获取毫秒数,计算调用时长的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧...

    0day__6152021-05-30
  • Pythonpython绘制评估优化算法性能的测试函数

    使用python 的matplotlib 画轨道实例

    今天小编就为大家分享一篇使用python 的matplotlib 画轨道实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧 ...

    cq_pf6192020-04-13
  • Pythonpython绘制评估优化算法性能的测试函数

    python基础知识小结之集合

    本文给大家小结了一下Python中集合的基础知识,非常的简单易懂,有需要的小伙伴可以参考下。 ...

    Python教程网4662020-08-04
  • Pythonpython绘制评估优化算法性能的测试函数

    python中常用的九种预处理方法分享

    这篇文章给大家分享了python中常用的九种预处理方法,对大家学习或使用python具有一定的参考价值,有需要的朋友们可以一起来看看。 ...

    Python教程网4992020-09-06
  • Pythonpython绘制评估优化算法性能的测试函数

    keras 模型参数,模型保存,中间结果输出操作

    这篇文章主要介绍了keras 模型参数,模型保存,中间结果输出操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧 ...

    姚贤贤8912020-07-07
  • Pythonpython绘制评估优化算法性能的测试函数

    Python读大数据txt

    本文通过2个例子给大家介绍了如何使用python实现读取大文件txt的方法,有需要的小伙伴可以参考下 ...

    脚本之家3662020-08-18
  • Pythonpython绘制评估优化算法性能的测试函数

    python爬虫租房信息在地图上显示的方法

    这篇文章主要介绍了python爬虫租房信息在地图上显示的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的...

    DIVI_ZHANG8182021-06-26
  • Pythonpython绘制评估优化算法性能的测试函数

    python+flask实现API的方法

    这篇文章主要为大家详细介绍了python+flask实现API的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...

    kd丹妮儿7682021-04-21